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Abstract 

Autonomous navigation is one of the main research areas related to modern robotics. 

Unstructured environment navigation can be considered as one of the main branches of 

Autonomous navigation. The subsystem of the robot that is responsible for taking decisions 

related to navigation is called a motion planner. These systems analyze the environment, 

recognizes obstacles and calculate a path, which the robot can follow to achieve its goals. 

Recent research has been focusing on building motion planners that are capable of navigating 

in unstructured environments. To address the issue of navigating in an unstructured unknown 

terrain without prebuilt maps, I present a motion planner that is capable of planning a path for 

the robot to follow, using point clouds of the environment. This research focuses on building a 

motion planner consisting of a point cloud analyzer, a path planner and a velocity controller 

that is capable of finding a path in an unstructured area. This research also describes how the 

proposed motion planner can be used to explore and map an unstructured environment. 

 

Keywords: Unstructured terrain navigation, Path planning, Point Cloud Based Navigation, 

Unknown Area Mapping, Octomap based Navigation 
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1. Introduction 

1.1. Background 

The project “Motion planner to explore unknown rough terrain” is focused on building a 

motion planner for “Search and Rescue robot” which is currently under development at the 

Intellisense Lab of Computer Science and Engineering Department of  University of Moratuwa. 

Motion planners are systems that perceive the environment and calculate paths in the 

environment that the robot can take to reach a goal without colliding with the obstacles in the 

environment, without falling to holes in the ground or without tripping over mounds on the 

ground.  

 

All the moving robots require a motion planner system and these systems tend to be unique for 

different kinds of robots depending on the size of the robot, shape of the robot, purpose of the 

robot and the environment it is supposed to work.  

 

Motion planners usually contain two main components, a global planner and a local planner. 

The definition and structure of these two components can vary according to the developer and 

some motion planners might have only one component. 

 

As a general explanation, global planners can be said to focus on perceiving the environment 

and on calculating the path to take without colliding with obstacles. Global planners are 

designed to calculate a path in the environment in a way that the robot can achieve its 

navigation goals. They calculate the direction the robot should head as well as the speed, tilt, 

pitch and pan of the robot body. 

 

Local planners on legged robots can be said to focus on calculating footfall locations for the 

robot to move forward while maintaining balance. And local planners on non-legged (wheeled 

or tracked) robots can be said to focus on avoiding small obstacles that do not appear on the 

global map but can obstruct the movement. Dynamic obstacle avoidance is a common focus of 

local planners on both legged and non-legged robots. 
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Exploration is one of the main uses of robots and can be divided into two parts, known area 

exploration, and unknown area exploration. Known areas are areas with a complete map that 

indicates all the objects in that area. Unknown areas may or may not have maps like in known 

areas and even if such maps exist, they would only be partially complete, which means the 

locations of objects are not defined in those maps and needs to be identified by the robot. 

Throughout this report, unknown areas with maps are identified as “structured unknown areas” 

and unknown areas without maps are identified as “unstructured unknown areas”. Motion 

planners depend on these maps when they calculate paths from start to goal positions. 

 

During exploration, robots must be able to traverse various kinds of even and uneven terrain 

according to their purpose. Flat terrains have an even surface without pits or mounds and rough 

terrains have uneven terrain that with mounds of pits. Flat terrain traversal is the basic traversal 

method and rough terrain traversing is an advance ability that some robots have. The motion 

planner needs to be designed according to the traversal method the robot is intended to use. 

1.2. Problem Statement 

When a robot traverses the terrain, indoor or outdoor, it must perceive the environment to 

calculate a path to keep itself from colliding with the obstacles. Additionally, it must calculate 

whether to go over or to go around the pits or mounds that are in the calculated path. 

 

The purpose of the “Search and Rescue” robot is to explore an unstructured unknown area. The 

motion planner has to calculate a path in an environment where a goal position or a map does 

not exist. It must calculate a path so that it can travel around without colliding with any 

obstacles, map the environment and return to the starting position. It also has to consider pits 

and mounds on the calculated path. 

 

According to the above explanation, the problem statement for the project will be, 

“Building a motion planner that can explore an unstructured unknown environment” 
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1.3. Motivation 

The main motive of this project is to support the ongoing “Search and Rescue robot” 

development by developing a motion planner that can be used as its navigation subsystem. 

Another motive is to learn about and contribute to the development of motion planners which 

are used in unstructured unknown environment navigation worldwide.  

1.4. Research Objectives 

● Design and development of a global planner that can calculate a path in an unknown 

unstructured environment to map the whole area. 

● Design and development of a local planner that can calculate speed and direction 

according to the state of the path and distance to the next point. 

● Development and Testing of a motion planning system that can navigate in an 

unstructured unknown environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

2. Literature Review 

2.1. Path Planning 

Path planning and obstacle avoidance in robotics both came to attention once the robots started 

to move. Ever since then, a lot of research has been conducted to find ways to perceive the 

environment from the point of view of the robot and to make it decide on which path to take 

and how to move. Eldershaw and Yim came up with a motion planner [1] which had two 

components, a center of gravity planner and a foot location planner. The center of gravity 

planner calculated the path of the center of gravity of the robot and the foot planner decided 

where to place the leg. They defined the requirements a motion planner should fulfill and how 

the developers could design a motion planner. The center of gravity planner functioned as the 

global planner and foot planner functioned as the local planner. 

 

Methods such as point clouds built using stereo cameras came forward as a method to perceive 

the environment but lacked a mathematical approach for calculations. As a solution, occupancy 

grid maps [2] were introduced by A. Elfes. Occupancy grid maps discretized the environment 

into a cubic matrix and gave each cell a probability of being occupied. Initially, data from 

proximity sensors and sonar sensors were used to build the occupancy grid map. But now point 

clouds generated from stereo cameras are used. 

 

Occupancy grid maps were created to understand the environment and obstacles while 

algorithms such as Simultaneous Localization and Mapping were introduced for localization 

of robots with respect to the environment. Mapping happened with respect to the robot and 

since the robot was mobile, the need for ground relation came up. Bourgault et al. suggested to 

use both occupancy grid maps and SLAM to achieve localized occupancy grids. They proposed 

an Information space [3] which was constructed using occupancy grid map data and SLAM 

algorithm data. With it, it was possible to calculate a path considering the position and 

orientation of the robot. 

 

Mapping was initially developed for static environments. Challenge was to handle dynamic 

environments where the environment constantly changed. Biswas et al. came up with the map 

differencing technique [4] that used several occupancy grid maps built at several points in time. 
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he combined them and compared them with each other using several techniques to learn about 

different objects in the map as well as to derive their paths. He had few issues with individually 

identifying objects that traveled closely. 

 

Han et al. also proposed a method to navigate using layered cost maps. They proposed to predict 

an object’s position using its own kinematic information as well as the other objects’ 

information [5]. Then they created a new layer in the cost map and set different cost values for 

around objects predicted path. A combination of these gave the occupancy grid map that 

contained information of dynamic objects and it could be used for navigation in dynamic 

environments. 

 

After mapping the environment, researchers had to come up with a way to make the robot 

understand where it was and where the obstacles were. Oussama Khatib came up with the 

artificial potential field concept [6] where the robot had a repellent force reaction between the 

robot and the obstacles or the occupancy grid map clusters and an attraction force reaction to 

the robot body and the goal. This made the robot to select the lowest potential route between 

obstacles to get to the goal. Initially, this was proposed for robot arm manipulation but was 

later got adopted in robotic navigation.  

2.2. Outdoor Rough Terrain Exploration 

One of the main challenges in outdoor exploration is the requirement to identify the holes and 

mounds in the ground which can become an obstacle to the robot. Sabe et al. proposed a method 

based on occupancy grid maps to sense the floor. The method used stereo cameras to build a 

point cloud of the ground and built an occupancy grid map. Then it used Hough transformation 

to extract the floor. With this, a single layer occupancy grid map [7] was built where it could 

be used to identify holes and mounds on the ground. It was unable to give the depth or the 

height of those holes or mounds. Even if this method was mainly developed for legged robots 

it can be used on non-legged robots as well. 

 

Konolige et al. proposed a method of using stereo vision instead of laser rangefinders to map 

an unstructured outdoor area. They selected stereo vision because it had a higher range than 

laser range finders. They used a depth map to identify obstacles and floor and then sightlines 
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extend it to distance [8]. They also used color images to identify roads using color models. 

They combined these on a 2D occupancy grid map using GPS data and visual odometry data 

for localization purposes. They then used this map for the path planning of an outdoor robot.  

 

The ability to detect water puddles is another main requirement for outdoor navigation. If not 

identified correctly, this can be hazardous for most of the ground-based robots. Rankin et al. 

proposed a method to detect water during daytime [9] using RGBD cameras. They proposed to 

use multi cues of an image such as color, texture, detection of reflections and depth to detect 

water. They then proposed a rule base to combine the results from separate cues to a single one 

and they showed it works by implementing it into a run-time passive perception subsystem. 

 

Different uneven terrains have different physical properties and the ability to control the robot's 

speed and other parameters according to the environment can lead to efficient and faster 

navigation.  Siva et al. proposed a joint terrain representation and apprentice learning-based 

approach in [10] to change the robots’ adaptability to the environment dynamically.  Their 

approach focuses on treating representation of the environment and apprenticeship-based 

learning under a unified optimization framework. Their approach is also capable of identifying 

discriminative features of the terrain and adapt the robot accordingly. 

2.3. Octomap based path planning 

Robots need maps to traverse an area. But when robots improve from 2D movement to 3D 

movement, maps also needed to become 3D. Many layers for occupancy grid maps could solve 

this issue but working with all at the same time became computationally intensive for hardware 

mountable on robots. As a solution, Hornung et al. came up with a framework to generate 

volumetric 3D environmental models [11]. Their approach was based on octrees and used 

probabilistic occupancy estimation just like in occupancy grid maps. In addition to the 

occupancy state of a voxel, it also another two states that represent free and unknown voxels. 

Additionally, they proposed compression techniques for the map. 

 

When navigation planning is done using Octomap, they use the occupancy data in the map to 

build a 2D Occupancy grid map. Maier et al. demonstrated this by using a consumer-level 

depth camera to build the Octomap of a room in real-time. They overlaid this newly acquired 
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occupancy data on a previously built Octomap of the room and showed that data is correct 

[12]. Then they used the Octomap built using depth camera data to build an occupancy grid 

map which in turn was used to navigate a bipedal robot without colliding with obstacles in the 

room.  

 

Using the Octomap to acquire the map and then converting it into a 2D map for navigation 

made sure that it was computationally feasible but also meant that losing data along a 

dimension. Since the targeted robot only had 2D movements it did not pose any issues. But 

when used in mobile manipulation systems, this loss of data became an issue because the robot 

had movements in all 3 dimensions. As a solution, Hornung et al. proposed a new planning 

approach that used a combination of multi-layered 2D and 3D representations. They used the 

Octomap generated from the depth camera to build several 2D occupancy grid maps on 

different height ranges [13]. This height was decided according to the shape of the robot. This 

was faster than directly building several maps from scratch but needed more computational 

power than before. They demonstrated the system using a mobile manipulation robot named 

PR2. 

 

Octomap framework can be used to analyze the environment as it segments the space into 

cubes and presents it in a mathematical manner. Ramanagopal et al. proposed a method to use 

the Octomap framework to model structures as monuments and buildings [14] using a ground 

robot. They suggested using an approach similar to the wall following to map the perimeter of 

the structure. After detecting unmapped cavity areas, they proceed to explore them 

individually. For the localization purposes, they use a Visual Simultaneous Localizing and 

Mapping method which benefits from their choice of movement. Their approach does not 

assume bounds on the structure and thus initial dead reckoning localization can affect the 

visualization process. They have shown that their system is capable to create the model of the 

structure even under those conditions. This carries the concept of calculating the goal of path 

planning according to the requirement of the robot than setting it externally by an operator. 

 

While Ramanagopal et al. proposed ground robot-based 3D modeling, Schmid et al. proposed 

the use of flying robots to map indoor and outdoor buildings [15]. In this approach, they use 

the ‘waypoint following’ approach while using the Octomap framework to identify 3D 

obstacles in the environment and to calculate paths around them. They use stereo cameras to 
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capture the environment and have developed an FPGA based approach to do the required 

processing on the robot itself including Octomap generation. 

 

Since Octomaps are able to create 3D maps of the environment, it becomes quite useful in 

relief operations performed in disaster zones. They can be used to map a damaged building or 

a disaster site which can be unreachable for humans. Dube et al. proposed a robotic navigation 

system that can be used by firefighters to map a disaster zone [16]. Their proposed system uses 

navigation points selected by a firefighter operator as goals to calculate paths. They use 

previously built Octomaps to calculate the initial paths and are capable of continuing the 

mapping from a previously stopped point rather than starting all over again every time they 

stop. 

2.4. Unstructured area path planning 

Robot path planning systems depend on maps on varying degrees to calculate paths. Some 

systems use completely defined maps and some use semi-defined maps that contain floor layout 

but not the obstacle positions. In semi-defined maps, they use depth cameras or laser 

rangefinders to detect the distance to the obstacles in the vicinity and use localization methods 

to correctly identify the position of the robot with respect to obstacles. 

 

Navigation without maps forces the system to recognize floor and traversable areas in addition 

to mapping obstacles in the vicinity. Yang et al. presented a method that used stereo images to 

build a point cloud of the surrounding and then extract the floor from the data [17]. The method 

used edge detection to extract the free road from obstacles. They used RRTs to store these data 

and later on used for path planning.  Their system was able to solve the navigation without 

building a global map. 

 

Klaser et al. also proposed a stereo vision-based approach to navigate in an unstructured area 

in [18]. They propose to use a stereo camera to build a point cloud of the area and then use a 

probabilistic evaluation on the point cloud to reduce the noise. During the implementations, 

they used the Octomap framework for point cloud probabilistic evaluation. Since it is an 

unstructured environment, they have opted out to use Extended Kalman Filter for localization 

by integrating IMU data, GPS data and wheel encoder data. Ultimately, they prepare a 
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navigability map by down projecting the Octomap and then uses motion primitives of their test 

vehicle for path planning. They have simulated the system and shown that their proposed 

system is capable of successfully navigating in an unstructured area. 

 

Autonomous navigation in an environment with slopes and staircases can be mentioned as one 

of the main challenges in uneven terrain navigation. Wang et al. proposed a navigation system 

in [19] that uses the Octomap framework to identify and overcome slopes and staircases. Their 

proposed method was to create an Octomap of the environment using a 3D SLAM approach 

and then slice it at different heights to create several occupancy grids. They after evaluating 

them, they create a ‘Traversability map’ that considers slopes as traversable areas. In order to 

support this navigation, they use 2D SLAM for initial localization and camera relocalization 

method based on the regression forest for main localization. After creating the ‘Traversability 

map’, they use variable step size RRTs for path planning purposes. 

 

Navigation systems prepare various kinds of maps to support their path planning processes. 

These maps have their own advantages and disadvantages unique to them. Occupancy grid 

maps, feature maps, topological maps, navigability maps, Traversability maps, and hybrid 

maps can be shown as examples. Each one except for the last hybrid maps captures one aspect 

of the environment and use it to navigate where hybrid maps are created using both feature 

maps and topological maps. Guivant et al. proposed a new hybrid map named Hybrid Metric 

Map [20] that bases itself on feature maps and incorporate other metrics representations.  This 

enables users to use and extract various kinds of data from the same map and helps to increase 

the relativity of data.  They also present a SLAM algorithm for path planning using all the maps 

at once. Since these can capture various aspects at once, it becomes useful when navigating in 

unstructured areas without early knowledge.
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3. Methodology 

3.1. Proposed Solution 

The purpose of the “Search and Rescue” robot is to map an unstructured unknown area. The 

scope of this project is to build a motion planner so that the robot can build a map of the area 

effectively. The robot uses the Octomap framework to build the map using the point cloud 

generated by the depth camera of the robot. The proposed method to build the motion planner 

is to use the map developed using the Octomap framework for path planning.  Following steps 

are proposed for navigation, 

• Recognizing unexplored areas. 

• Selecting the nearest point just beyond the explored region. 

• Calculating an occupancy grid considering discovered obstacles 

• Calculating the path according to the occupancy grid. 

• Reaching the point 

• Repeating the process again 

3.2. Implementation 

For the ease of development and testing, the motion planner has been divided into 4 separate 

subsystems as, 

• Goal Identifier 

• Path Planner 

• Ground Evaluator 

• Velocity Controller 

Goal Identifier analyses the Octomap generated by the mapping system and recognizes the 

unexplored areas. It also calculates the nearest unexplored point just beyond the explored 

region. 

 

The second subsystem, Path Planner also analyses the Octomap generated by the mapping 

system to recognize explored areas as well as the obstacles in it. It calculates a 2D occupancy 
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grid considering discovered obstacles and then uses that grid to calculate a path using the A-

star algorithm. 

 

Ground Evaluator supports the Path Planner with recognizing water puddles that cannot be 

detected from the map built using Octomap. Goal Identifier, Path Planner and Ground 

Evaluator combined system acts as the global planner of the motion planner. 

 

Velocity Controller connects the motion planner with the robot by converting Path Planner 

movement commands into velocity commands which can be recognized by the robot. This acts 

as the local planner of the motion planner. 

 

Figure 3.1 shows the connectivity between subsystems. Arrows represent the direction of 

communication. 

 

Figure 3.1 Connectivity between subsystem 

The system was implemented on the Robot Operating System [21] along with the Octomap 

framework. Octomap Framework can be invoked as a ROS node named “Octomap Server” and 

publishes Octomap as a ROS message. Figure 3.2 explains the technology stack for the 

proposed motion planner. 

 

Figure 3.2 Technology stack of the motion planner 
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3.2.1. Goal Identifier 

When a motion planner calculates a path, it takes a location (current location of the robot is 

used in general) as the start of the path,  the location it intends to reach (henceforth “goal”) as 

the end of the path and attempts to calculate a path in between. So, the goal becomes one of 

the main requirements for calculating a path. But when unstructured unknown areas are 

concerned where a map or a goal has not been clearly defined, planning becomes impossible. 

Thus, it is important to clearly identify a goal such that a path can be calculated to explore the 

area efficiently. 

3.2.1.1. Design 

The Goal Identifier subsystem analyses the Octomap generated by the Octomap server ROS 

node and selects the nearest unexplored location. To achieve this, the subsystem contains two 

components, 

• Discover-Clusters 

• Find-Nearest-Cluster 
 

 

Discover-Clusters takes the Octomap generated by the Octomap server and the dimensions of 

the area we are interested in exploring as input and produces a list of undiscovered clusters as 

an output. This component iterates through the voxels in the Octomap generated by the 

Octomap server. It divides the total area of the Octomap into clusters with a predefined size 

and iterates in them while inspecting the state of the voxels. Voxels have 3 states named 

occupied, unoccupied (free) and unknown [11] which is explained in figure 3.3, 

 

Figure 3.3 Voxel State 
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Discover-Clusters component then produces a list of center points of clusters that are 

undiscovered. Clusters are classified as “undiscovered” if the percentage of unknown pixels is 

higher than a predefined threshold. Following pseudocode describes the procedure, 

Discover-Clusters (Octomap, area dimensions) 

• Divide Octomap into clusters of a pre-defined size 

• Iterate through all the clusters evaluating the state of voxels (free, occupied, 

undefined) 

• If the percentage of undefined voxels in a cluster is over the threshold, flag it as 

an undiscovered cluster. 

• Return a list of the center points of unknown clusters 

Find-Nearest-Clusters is the other component of the Goal Identifier subsystem. It takes the list 

of cluster centers produced in the Discover-Clusters component as the input and calculates the 

nearest cluster to the current position. It iterates over the list of cluster centers while calculating 

the Euclidean distance to the current position from each cluster center. It returns the closest 

cluster in the undiscovered region (cluster with the least Euclidean distance) as the output. 

Following simple algorithm describes the procedure, 

Find-Nearest-Cluster(UnknownCluster list, CurrentPosition) 

• Iterate through the clusters while calculating the distance to the current position 

from the center of the cluster 

• Select the closest cluster as the goal. 

3.2.1.2. Implementation 

The above-explained Goal Identifier subsystem was implemented as a C++ ROS node and a 

C++ object combination. The ROS node (named “Goal_identifier_node”) acts as an interface 

between the C++ object (named “IdentifierObject”) and the rest of the motion planner’s 

subsystems while C++ object do the required calculations to calculate the goal. During the 

initialization of the ROS node, the object is created with the specified parameters. C++ object 
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contains all the functions required to calculate the goal and those functions are invoked through 

the services offered by the “Goal_identifier_node”. 

3.2.1.2.1. Goal_identifier_node 

The ROS node functions as the interface between the IdentifierObject and the rest of the 

system. Table 3.1 contains details about its subscriptions of topics, publications of topics and 

advertisements of services. 

Table 3.1 goal_identifier_node connections 

Type Name Callback Task 

Subscribed 

Topics 

/octomap_full mapCallback update the Octomap used for calculations 

/odom 
currentPosition 

Callback 

update the current position used for 

calculations 

Published 

Topics 

/centerArray - 
Publish center points of undiscovered 

clusters 

/goalPoint - Publish the selected goal 

Advertised 

Services 

/goalPosition executionCallback 
find the nearest undiscovered cluster’s 

center 

/goalRemove removeCallback Remove a cluster center 

The ROS node uses the general spinner functionality to grab and evaluate the callback queues 

at a rate of 100Hz. The respective callbacks update the Octomap and position variables of the 

C++ object at the same rate the callbacks are called.  

 

The values published through “centerArray” and “goalPoint” can be used to visualize the result. 

They act as a means to visualize the process happening inside the Goal Identifier subsystem 

and does not contribute to any processes related to goal calculation. centerArray topic publishes 

ROS messages of the type “pointDataArray” and goalPoint topic publishes messages of the 

type “pointData”. These custom messages are explained further in section, “Custom messages 

of Topics and Services”. 
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The service “goalPosition” offers the functionality to analyze the Octomap and to calculate the 

goal. The results of the goal calculation, whether it found a goal or not and the coordinates of 

the goal, are returned as the response of the service call. This service gets requested by the Path 

Planner subsystem. 

 

The service “goalRemove” offers the functionality to remove a point from the set of cluster 

centers which acts as candidates for the goal. This service is called when a goal gets flagged as 

unreachable and want to be removed from future calculations. This service gets requested by 

the Path Planner subsystem. 

 

Figure 3.4 explains the connections the goal_identifier_node has with the IdentifierObject as 

well as the external nodes such as Octomap_server node and kobuki node and 

global_path_planner_node. 

 

Figure 3.4 Structure of goal_identifier_node interface 

3.2.1.2.2. IdentifierObject 

The IdentifierObject contains the functions required to calculate the goal. This object gets 

created at the initialization of the goal_identifier_node and the methods of this object get 

invoked through the callbacks and service calls available in the goal_identifier_node. Table 3.2 

contains the names and the basic functionalities of the functions of this object. 

mapCallback 

currentPositionCallback 

executionCallback 

removeCallback 

Center Array 

Goal position 

Goal_identifier_node 

Id
en

ti
fi

er
O

b
je

ct
 

Octomap_server 

Kobuki_node 

global_path_planner_node 

global_path_planner_node 

goal_visualizer_node 



16 

Table 3.2 Functions available in the IdentifierObject 

Function Functionality Input/output 

update_position Updates the Octomap used for map calculation. 3D point (input) 

update_tree Updates the current position of the robot Octomap (input) 

calculate 

Calculates the goal position. Implements Discover-

Clusters and Find-Nearest-Cluster functionality described 

in the design section 

3D point (output) 

remove Remove a point from goal candidates 3D point (input) 

Figure 3.5 shows the structure of the IdentifierObject, 

 

Figure 3.5 IdentifierObject structure 
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Figure 3.6 Complete structure of Goal Identifier Sub system 
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can interfere with odometry readings was one of the main focuses during the designing of this 

system.  

 

Another main issue that this motion planner faced was the inability to use artificial potential 

field method or any other algorithm to directly identify a path. Not having a map of the 

environment was the reason. To solve this, a simple occupancy grid was created after analyzing 

the Octomap generated by the Octomap_server. This occupancy grid needs to be recalculated 

every time, before a path calculation, to capture the updated areas in the Octomap. The A-star 

algorithm was used to calculate a path according to the created occupancy grid. 

3.2.2.1. Design 

The Path Planner subsystem was designed to move a robot in an unknown environment. To 

move the robot from one position to another, it needs to calculate an obstacle-free path. To 

calculate an obstacle-free path, it needs a map with known obstacles marked in it. To build a 

map with obstacles, the robot needs to analyze the environment around it.  

 

Octomap, generated by the Octomap server provides a probabilistic representation of the 

surrounding environment and the robot can use it to analyze the surrounding. Then the planner 

can create a 2D or 3D map with obstacle positions marked in it. The map then can be used to 

calculate an obstacle-free path for the robot to move.  

 

The above first analysis breaks the problem into smaller parts that depend on each other and 

highlights the approach one needs to take to solve it. The second analysis proposes an approach 

that can be followed to solve the problem as explained in the first analysis. This was the basic 

breakdown of the problem and the bottom-up design of the solution that happened during the 

path planner design. According to that design, the following steps were recognized as necessary 

to create the Path Planner. 

1. Analyzing the Octomap 

2. Build a 2D map with obstacles. 

3. Inflate the obstacles 

4. Calculate a path 
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3.2.2.1.1. Analyzing the Octomap 

The Octomap can be analyzed using two approaches, 

• Using the node iterator provided by the Octomap framework to iterate along the 

Octomap and build a 2D grid with occupancy details. 

• Assuming a 3D grid over the area in the Octomap where we need to analyze and 

iterating through it and extracting information to build the 2D grid with 

occupancy details. 

Out of the two approaches, the first approach works on the octree structure on which the 

Octomap is based on. Due to this reason, it returns nodes according to the octree structure and 

the system has to filter out the points which are outside the area subjected to the analysis. The 

second approach directly checks whether the points inside the specified area are discovered 

and occupied. The Path Planner uses the second approach. Octomap analyzing can be done in 

two stages, 

• Surrounding analysis 

• Ground analysis 

Surrounding analysis evaluates the Octomap nodes from the ground level up to the height of 

the robot. This makes sure that the robot can move through the underpasses that are higher than 

the robot height. The planner looks for Octomap nodes that are occupied and then marks them 

on the 2D grid as obstacles. In this analysis, occupied nodes in the Octomap represents 

obstacles in the real world. 

 

The ground analysis evaluates the Octomap nodes which are at the ground level. These nodes 

represent the actual ground and the planner looks for nodes that are unoccupied. Occupied 

nodes during ground analysis mean that the floor exists, and unoccupied nodes mean floor does 

not exist (pits and falls). So, the planner looks for unoccupied nodes during ground analysis 

and marks them on the 2D grid as obstacles. 
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3.2.2.1.2. Building the 2D grid 

As mentioned in the above section, a 2D grid is used to store data about the obstacles in the 

real world. Since the obstacles found in the Octomap are marked on the 2D grid, the grid was 

designed with twice the resolution of the Octomap (i.e. if the Octomap’s resolution was 400 

cubic nodes per side each with 0.05m side, the grid has a resolution of 800 square nodes per 

side each with 0.025m side). The grid values can have 2 states, 

• Occupied 

• Not occupied 

Obstacles are represented by the occupied state and free space is represented by the unoccupied 

state. One of the issues that the planner had was that the goal was almost always got selected 

from outside of the discovered region. Due to that, the path calculation faced the issue of having 

to measure the distance to nonexistent points. The solution was to assume that the whole grid 

was traversable with no obstacles and then add the obstacles gradually rather than adding 

occupied and unoccupied points at once. During the Octomap analysis, the grid gets updated 

as explained in the above section. 

3.2.2.1.3. Inflating the obstacles 

After building the 2D grid as explained in the above sections, before a path can be calculated 

using that 2D grid, it needs to be modified so that the robot can navigate without colliding with 

obstacles. Path calculation considers the robot as a point object. Due to this, if the 2D grid 

created by analyzing Octomap was directly used for path calculation, the robot becomes unable 

to go near any obstacles or go around any obstacles because the width of the robot has not been 

factored into the calculation.  

 

To factor-in the robot width as well as to keep the calculation of the path as it is, the obstacles 

in the 2D grid need to be inflated by at least half the width of the robot. The blue areas in figure 

3.7 represent the obstacles and the green areas in figure 3.7 represent the inflation done in order 

to account for robot width. 
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3.2.2.1.4. Calculate a path 

After inflating the obstacles, the path planner can proceed to calculate a path. The grid becomes 

a graph where each value represents a vertex. All the vertices are connected with each other 

and each edge has a cost of ‘1’. Values with the occupied state become invalid vertices and are 

considered unreachable while the values with unoccupied state become vertices in the graph 

that can be reached.  

 

A graph traversal algorithm can be used to calculate a path. The motion planner uses the A-star 

algorithm because it is capable of finding a path if one exists. If the path does not exist, the 

algorithm returns a Null value signifying an issue with the 2D grid. If the issue is with the 

source then the robot needs to be moved to an adjacent free location, if the goal was not valid 

then it can be removed as an inaccessible goal. The source can be affected due to map updates 

that cause the inflation area to encompass the robot’s current position. 

 

After successfully calculating the path, it needs to be converted into real-life position values 

from the respective grid values. After that, it can be fed to the velocity controller subsystem to 

move the robot along the path. 

 

Figure 3.7 Inflation (green) of obstacles (blue) 
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3.2.2.2. Implementation 

This subsystem is implemented as a ROS node (named “global_path_planner_node”) and a 

C++ object (named “plannerObject”) combination. global_path_planner_node acts as the 

interface between the plannerObject and the rest of the motion planner. In addition to an 

interface, the global_path_planner_node also acts as the control unit of the whole motion 

planner. During the initialization of the global_path_planner_node, the plannerObject is 

created with the specified parameters. It contains all the functions required for the path 

calculation and those functions are invoked through the services offered by the 

“global_path_planner_node”. The control unit of the motion planner is also implemented inside 

the global_path_planner_node as a service and an external program can start the process 

through a service call. 

3.2.2.2.1. Global_path_planner_node 

The ROS node functions as the interface between the plannerObject and the rest of the system 

as well as the control unit of the whole system. Table 3.3 contains the details about its 

subscriptions of topics, publications of topics and advertisements of services as well as usage 

of services. 

Table 3.3 global_path_planner_node connections 

Type Name Callback Task 

Subscribed Topics 

/octomap_full mapCallback 
update the Octomap used for 

calculations 

/odom currentPositionCallback 
update the current position used 

for calculations 

Published Topics /gridMap - 
Publish 2D grid used to 

calculate the path 

Advertised Services /explore systemCallback Path calculation and exploration 

Requested Services 

/baseRotate rotateClient Rotate robot around z axis 

/baseReverse reverseClient Move robot backward 

/baseForward forwardClient Move robot forward 
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/goalPosition clientGoalPosition 
find the nearest undiscovered 

cluster’s center 

/goalRemove clientGoalRemove Remove a specific cluster center 

The ROS node uses the asynchronous spinner functionality to grab and evaluate the callback 

queues at a rate of 100Hz. An asynchronous spinner can be used to assign each callback queue 

a single processing thread, allowing parallel processing of callback messages unlike in general 

spinner functionality. A general spinner processes all the callback queues sequentially under a 

prespecified frequency. This can cause a loss of messages which can be harmful in cases where 

velocity control and position tracking is involved. The asynchronous spinner allows the node 

to process messages as they arrive. Parallel processing of callback queue messages can cause 

a “Race Condition” when updating the variables of plannerObject. It can be prevented by using 

a mutex inside callbacks where the plannerObject variables are updated. 

 

The mapCallback updates the map of the plannerObject while the currentPositionCallback 

updates the position of the plannerObject. These two callbacks function as the first part of the 

interface of the ROS node. Other parts of the interface consist of the clients for the services 

offered by Goal_identifier_node and the velocity_control_node. Clients for the services 

goalPosition and goalRemove control the calculation and removal of goal while the clients for 

the services baseForward, baseReverse, baseRotate controls the robot movement for the 

plannerObject.  

 

Figure 3.8 explains the connections of the global_path_planner_node with other nodes of the 

motion planner as well as other nodes as kobuki node and Octomap server node. “External 

control” block represents the external program used to start the mapping process as explained 

below. 
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Figure 3.8 Structure of path_planner_node interface 

The path planning and navigation process are triggered by the service “explore”. Rather than 

starting this as the main process at the beginning of the system load, it is implemented as a 

ROS service so that the user has more control over the system before starting the navigation 
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notification to the controller. The callback of the “explore” service, “systemCallback” acts as 

the main control unit of the motion planner by connecting with other subsystems of the motion 

planner through the global_path_planner_node’s interface as explained in figure 3.8. 

 

Publishing the developed 2D grid using the “gridMap” topic lets the user an idea about the 

progress of the mapping progress. It uses custom ROS messages “gridMap”, “gridRow”, and 
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Figure 3.9 Decision sequence inside systemCallback 

Decision sequence inside system callback 

Rotate by 360 

Request new goal 

Build 2D grid 

Calculate path 

Publish 2D grid 

Remove  goal 

Reduce Path 

Process Path 

Select point in path 

Driving  

success? 

Is it goal? 

Reverse 

No 

Yes 

yes 

no 

yes 

Start 

Stop 

Path exists? 

no 

Map  

explored? 

No 

Yes 



26 

3.2.2.2.2. plannerObject 

The plannerObject contains the functions required to calculate the path as explained in the 

design section. This object gets created at the initialization of the global_path_planner_node 

and the methods of this object get invoked by the ROS node during callbacks and service calls. 

Table 3.4 contains the names and the basic functionalities of the functions of this object. 

Table 3.4 PlannerObject functions and functionality 

Function Functionality Input/output 

update_position Updates the Octomap used for map calculation. 3D point (input) 

update_goal Updates the goal used for path calculation 3D point (input) 

update_tree Updates the current position of the robot Octomap (input) 

search Calculates the path using the 2D grid 
2D Grid (input) 

2D points (output) 

buildMap 
Builds the 2D map used for path calculation according to 

the procedure explained in the section Design 

Octomap (input) 

2D grid (output) 

processPath 
Converts 2D grid point into real-world 3D Points for 

robot’s navigation 

2D array (input) 

3D array (output) 

isBlocked 
Checks whether a point is inside an occupied are. Used to 

check whether source in the inflated area 

3D point (input) 

Boolean (output) 

reducePath Reduces points in the path 
3D array (input) 

3D array (output) 

nearestUnblocked Remove a point from goal candidates 3D point (input) 

 

Figure 3.10 shows the implementation of the “buildMap” function which is responsible for 

creating the 2D Grid used for path calculation. From the Octomap it extracts obstacles by 

iterating through the Octomap nodes. It also records the area that has been explored. After 

extracting the obstacles, it inflates them as explained in the previous Section 3.2.2.1.3. Then 

the area gets filtered with the discovered area. Only the obstacles in the discovered area are 

used to calculate the path. 
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Figure 3.10 Building the 2D grid for navigation 

Figure 3.11 shows the combined system of global_path_planner_node and plannerObject. 

 

Figure 3.11 Combined path_planner_node and plannerObject 
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3.2.3. Ground Evaluator 

This subsystem operates on images capture through the main camera and the depth camera of 

the robot and acts as a supporting system to the Path Planner subsystem. The current system is 

supposed to use images from the Kinect mounted on the Kobuki robot. 

 

Due to the increased complexity of the Path Planner subsystem and the lack of time, the 

integration of the Ground Evaluator subsystem to the motion planner system did not occur. The 

development and testing of the basic system to detect mud puddles completed. The 

development of the ROS node which acts as the interface between the motion planner and basic 

system did not occur. 

3.2.3.1. Design 

The main requirement of this subsystem was the ability to work in environments that it has 

never been to. To achieve this, it was decided not to use neural networks or other machine 

learning-based approaches. The solution decided was to use the image cues [10] as proposed 

by Rankin et al. After analyzing their results, it was decided that the main image cues,  

• texture 

• color 

• range reflection  

HSV image data and the greyscale image can be used to analyze the texture of the image. After 

running a variance filter on them, pixels with saturation values and greyscale values larger than 

25 can be used for further processing as described by Rankin et al. A boolean mask containing 

recognized points with water needs to be generated for texture cue named “textureMask”. 

 

HSV image data can be used to analyze the color of the image. The sky visibility in the image 

has the chance to interfere with the analysis and  Rankin et al. have proposed an extended 

evaluation of HSV data depending on the availability of the sky. Another boolean mask 

containing recognized points with water needs to be generated for color cue named 

“colorMask”. 
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The last cue is range reflections. According to Rankin et al. this is a phenomenon that occurs 

in the depth image when the reflections of the far objects are visible on the reflective surfaces 

such as mud puddles. Inflection points in the depth image columns can be used to recognize 

areas with range reflections. A third boolean mask needs to be generated for range reflections 

cue named “rangeMask”. 

 

A final Boolean mask can be calculated by using the above 3 masks. It can be generated 

according to the final results Rankin et al. has presented. Equation 3.1 shows the relationship 

between the 3 masks and the final mask. 

Equation 3.1 Calculation of water detection mask 

𝑓𝑖𝑛𝑎𝑙𝑀𝑎𝑠𝑘 = (𝑟𝑎𝑛𝑔𝑒𝑀𝑎𝑠𝑘) | (𝑟𝑎𝑛𝑔𝑒𝑀𝑎𝑠𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  & 𝑐𝑜𝑙𝑜𝑟𝑀𝑎𝑠𝑘 & 𝑡𝑒𝑥𝑡𝑢𝑟𝑒𝑀𝑎𝑠𝑘) 

3.2.3.2. Implementation 

This system has been developed as a python script. Each of the above-mentioned image 

analysis happens inside user-defined functions and all those are called upon by a single 

function. Figure 3.12 explains the structure of the system. 

 

Figure 3.12 Structure of ground evaluator 
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3.2.4. Velocity Controller 

This subsystem acts as the interface between the motion planner and robot motion control 

system. It converts the position data calculated by the Path Planner into velocity commands 

compatible with the robot base. This subsystem acts as the local planner of the motion planner 

system. 

3.2.4.1. Design 

To fulfill the requirements of the motion planner, the robot needs to be able to rotate around its 

z-axis, move forward and move backward. Following pseudocodes describes the steps taken to 

achieve each motion.  

 

Moving forward to a given point requires the robot to first rotate around its z-axis to face the 

correct direction and then to move forward to reach the point. Both of these actions need to 

happen in small increments so that the robot can move without errors. 

Forward (position, currentPosition, currentYaw) 

1. Calculate the angle that needs to be achieved to face the correct direction as shown 

in equation 3.2. 
 

Equation 3.2 Calculation of Yaw 

𝑦𝑎𝑤 = 𝑡𝑎𝑛−1 (
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑦 −  𝑐𝑢𝑟𝑟𝑒𝑛𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑦

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑥 −  𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑥
) 

2. Rotate around the z-axis to achieve the desired yaw. Angular velocity is calculated 

proportionally to the remaining angle to be rotated as shown in equation 3.3. The 

maximum rotational velocity 𝜔𝑚𝑎𝑥 has been capped to prevent odometry errors that 

can occur due to high rotational speeds.  𝑘𝜔 is a propositional constant. 

Equation 3.3 Calculation of Angular Velocity 

𝜔𝑧 = min{ 𝜔𝑚𝑎𝑥,  𝑘𝜔(𝑦𝑎𝑤 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑌𝑎𝑤)} 

3. Repeat steps 1 and 2 till the (𝑦𝑎𝑤 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑌𝑎𝑤) the value becomes neglectable. 
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4. Calculate distance to the position from the current position as shown in equation 

3.4. 

Equation 3.4  Calculation of Distance 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √

(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑥 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑥)2 +
(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑦 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑦)2 +
(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑧 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑧)2     

 

5. Move forward to travel the calculated distance. Forward velocity is calculated 

proportionally to the remaining distance to be traveled as shown in equation 3.5. 

The maximum velocity 𝑉𝑚𝑎𝑥 has been capped to prevent odometry errors due to 

high rotational speeds.  𝑘𝑥 is a propositional constant. 

Equation 3.5  Calculation of Velocity 

𝑉𝑥 = min{ 𝑉𝑚𝑎𝑥,  𝑘𝑥 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒} 

6. Repeat steps 4, 5 until (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) becomes neglectable. 

Unlike moving forward, moving backward only requires the robot to travel backward a 

specified distance. This distance is calculated relative to the resolution of the Octomap since it 

is only needed when the robot runs into an obstacle not marked or falsely marked on the 

Octomap. Here also the movement is achieved through small increments rather than moving at 

once to reduce odometry issues. 

Backward (currentPosition) 

1. Mark the current position as startPosition. 
 

2. Calculate distance to the startPosition from the current position as shown in 

equation 3.6. 

Equation 3.6  Calculation of Distance 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √

(𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑥 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑥)2 +
(𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑦 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑦)2 +
(𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑧 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑧)2     
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3. Move backward to travel the specifiedDistance distance. Backward velocity is 

calculated proportionally to the remaining distance to be traveled as shown in 

equation 3.7. The maximum velocity 𝑉𝑚𝑎𝑥 was capped to prevent odometry reading 

errors due to high rotational speeds.  𝑘𝑥 is a propositional constant. 

Equation 3.7 Calculation of Backward Velocity 

𝑉𝑥 = max  {−1 ∗  𝑉𝑚𝑎𝑥, −1 ∗ 𝑘𝑥 ∗ (𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)} 

4. Repeat steps 2, 3 until (𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) becomes neglectable. 

The last action is the rotation around the z-axis, and it is performed in order to update the map. 

To update the map evenly, the robot base rotates in a constant rotational velocity, rather than 

calculating the rotational velocity proportional to the angle to be rotated. To prevent the robot 

from rotating more than 360 degrees, robot rotation happens in small increments rather than 

rotating at once. 

Rotate (desired angle) 

1. Calculate the new yaw value considering the current yaw and the angle to be rotated 

as shown in equation 3.8. If this value becomes more than 2π radians, it needs to be 

converted into a value between 0 and 2π. 

Equation 3.8  Calculation of Yaw 

𝑦𝑎𝑤 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑌𝑎𝑤 + 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝐴𝑛𝑔𝑙𝑒 

2. Rotate around z-axis to achieve 𝑦𝑎𝑤. Since the Angular velocity is constant as in 

equation 3.9, the only requirement is to make sure that the robot does not exceed 

the specified yaw. 

Equation 3.9 Calculation of Angular Velocity 

𝜔𝑧 =  𝜔𝑟𝑜𝑡𝑎𝑡𝑒 

3. Repeat steps 1, 2 until (𝑦𝑎𝑤 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑌𝑎𝑤) value neglectable. 
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3.2.4.2. Implementation 

The velocity controller subsystem consists of a single ROS node called 

“velocity_control_node”. It converts position commands calculated by the Path Planner 

subsystem into velocity commands that can be recognized by the robot motion controller. It 

also listens to bumper events published by the robot in order to monitor collisions that can 

occur. It controls the base of the robot through ROS topics and offers movement functionality 

to path planner as ROS services. Table 3.5 contains the details about the services the 

velocity_control_node offers as well as the topics it subscribes to and topics it publishes, 

Table 3.5 Velocity_control_node connections 

Type Name Callback Task 

Subscribed 

Topics 

/mobile_base/events/bumper bumperCallback 
Checks whether the robot collides 

with obstacles 

/odom 
currentPosition 

Callback 

update the current position used 

for calculations 

Published 

Topics 

/mobile_base/commands 

/velocity 
- 

Velocity commands to the robot 

base 

/mobile_base/commands 

/motor_power 
- 

Power commands to the robot 

base 

Advertised 

Services 

/baseRotate rotateCallback Rotate robot around z axis 

/baseReverse reverseCallback Move robot backward 

/baseForward driveCallback Move robot forward 

The ROS node uses the asynchronous spinner functionality to grab and evaluate the callback 

queues at a rate of 100Hz. Asynchronous spinner can be used to assign each callback queue a 

separate processing thread allowing parallel processing of callback messages unlike in general 

functionality. This becomes important when keeping track of robot position and velocity. 

General spinners process all the callback queues at once, sequentially with a fixed frequency 

that can be harmful to velocity control and position tracking. But the asynchronous spinner 

allows the node to process callback queue messages as they arrive. 
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The driveCallback implements the above procedure named “forward” and responds to the 

service “baseForward” which offers to move the robot forward to a given point. The point to 

be moved is included in the request of the service “baseDriveRequest” while the completion 

of the operation is included in the response of the service “baseDriveResponse”. 

 

The reverseCallback implements the “reverse” procedure explained above and responds to the 

“baseReverse” service which offers to move the robot backward a fixed distance. The current 

position is included in the request of the service “baseDriveRequest” while the completion of 

the operation is included in the response of the service “baseDriveResponse”. 

 

The rotateCallback implements the “rotate” procedure explained above and responds to the 

“baseRotate” service which offers to rotate the robot around its z-axis. Angle to be rotated is 

included in the request of the service “baseRotateRequest” while the completion of the 

operation is included in the response of the service “baseRotateResponse”. 

 

The velocity_control_node subscribes to the odometry topic and bumper event topic published 

by the robot base. From the odometry readings, it derives the current position of the robot as 

well as the current yaw of the robot for calculations related to the base movement. Bumper 

events indicate whether the base has collided with an obstacle or whether it is free to move. If 

the bumper events get triggered while the robot is on the move, the velocity_control_node stops 

all movements and waits for the Path Planner subsystems response. Current Path Planner 

implementation responds with a move back command. 

 

The robot calculates the velocity according to the position and yaw of the robot and then 

publishes the respective velocity commands as well as the power on/ off commands to the robot 

base through the “mobile_base/cmd_vel” topic and the “mobile_base/motor_power” topics. 

Figure 3.12 illustrates the structure of the velocity control node as well as its connections with 

external subsystems and nodes. 
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Figure 3.13 Structure of velocity_control_node 

3.2.5. Custom messages used in Topics and Services 

ROS uses topics, services and actions as a communication medium to communicate between 

ROS nodes. ROS topics utilize basic ROS messages which can only be sent in one direction, 

from the publisher to the subscriber. These messages can be empty or can carry data. ROS 

services use more complex message pairs which are called “Requests” and “Responses”. 

Request messages are sent from the client node to the server node and contain data required for 

the server-side process. After completing the process, the server replies with a Response 

message that contains the results of the server-side process. Both Request and Response can be 

empty or can carry data as mentioned above. 

 

During the implementation of the Motion Planner, custom messages, service requests, and 

service responses had to be created in order to fulfill the needs of the subsystems of the motion 

planner. 

bumperCallback 

currentPositionCallback 

forwardCallback 

Motor power 

Velocity 

Velocity_control_node 

Kobuki_node 

baseForward service 

Publish mobile_base/commands/motor_power 

Publish mobile_base/commands/velocity 

reverseCallback 

Motor power 

Velocity 

baseReverse service 

Publish mobile_base/commands/motor_power 

Publish mobile_base/commands/velocity 

rotateCallback 

Motor power 

Velocity 

baseRotate service 

Publish mobile_base/commands/motor_power 

Publish mobile_base/commands/velocity 
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3.2.5.1. Messages 

The current motion planner system contains 5 types of messages to fulfill 2 requirements. 

pointData and pointDataArray messages focus on transferring a 3D point array while the 

gridPoint, gridRow, and gridMap messages focus on transferring a 3D matrix. 

3.2.5.1.1. pointData 

This message contains 3 data fields of basic ROS data type “float32”. The data fields as shown 

in table 3.6 can be used to store x, y, z coordinates of any 3D point. 

Table 3.6 pointData message structure 

Data field type Data field name Purpose 

Float32 x Hold X coordinate 

Float32 y Hold Y coordinate 

Float32 z Hold Z coordinate 

3.2.5.1.2. pointDataArray 

This message contains 1 data field of custom ROS message type “pointData”. It has been 

implemented as an array and can be used to store messages of type pointData. This creates a 

message with a 3D point data array that fulfills the first requirement. The goal_identifier_node 

uses pointData and pointDataArray messages to send the goal and center points of the 

unmapped clusters to the goal_visualizer_node for visualizing. Table 3.7 explains the fields of 

the pointDataArray message. 

Table 3.7 pointDataArray message structure 

Data field type Data field name Purpose 

pointData[] centerPointsArray Contain point data array 

3.2.5.1.3. gridPoint 

This message contains 3 data fields of basic ROS data type int8. These data fields can be used 

to store data related to a single point in the 2D grid used for path calculation. Table 3.8 explains 

the fields of the gridPoint message. 
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Table 3.8 gridPoint  message structure 

Data field type Data field name Purpose 

Int8 init Details about obstacles 

Int8 proc Details about inflation 

Int8 disc Details about map state 

3.2.5.1.4. gridRow 

This message contains 1 data field of custom ROS message type gridPoint. It has been 

implemented as an array and can be used to store gridPoint messages. This message represents 

a row in the 2D grid map used for path calculation. The gridPoint messages inserted into this 

array message should contain data from the points from the same row in the 2D grid. Table 3.9 

explains the fields of the pointDataArray message. 

Table 3.9 gridRow message structure 

Data field type Data field name Purpose 

gridPoint[] row Contain points in a row 

3.2.5.1.5. gridMap 

This message contains 3 data fields. They are the custom ROS message type “gridRow”, 

custom ROS message type “pointData” and basic ROS data type “int16”. The first field has 

been implemented as an array and can be used to store gridRow messages. This data field 

represents the 2D grid map used for path calculation and the gridRow messages inserted into 

this array message should contain data from the rows of the 2D grid. This creates a data field 

capable of capturing a whole matrix at once fulfilling the second requirement. 

 

The second field implements an array of pointData messages which can be used to insert the 

path calculated by the Path Planner into the message. The implementation is similar to the 

pointDataArray implementation explained in the above section. The last field contains a single 

variable of type int16 that carries the length of the array in the second field. These fields are 

explained in table 3.10. 
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Table 3.10 gridMap message structure 

Data field type Data field name Purpose 

gridRow[] grid Contain 3D matrix 

pointData[] path Contain calculated path 

Int16 pathLength2 The length of the path 

3.2.5.2. Service requests and responses 

The motion planner system contains 5 types of request and response message pairs which are 

used in 6 services. goalControl and goalRemove are related to the Goal Identifier subsystem 

and baseForward, baseReverse, and baseRotate are related to the Velocity Controller 

subsystem. 

3.2.5.2.1. goalControl 

The goalPosition service offered by the goal_identifier_node uses this message pair to 

communicate with its client in the global_path_planner_node. goalControl request carries the 

command to start the goal calculation and the goalControl response carries the results of the 

server-side process, whether the goal calculation was successful at finding a goal and if so its 

coordinates. Table 3.11 contains the fields related to each component response and request. 

Table 3.11 goalControl service message structure 

 Data field type Data field name Description 

goalControl request bool execute 
Command to start 

server-side process 

goalControl response 

bool isNull Found the goal or not 

Float32 x X coordinate 

Float32 y Y coordinate 

Float32 z Z coordinate 
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3.2.5.2.2. goalRemove  

The goalRemove service offered by the goal_identifier_node uses this message pair to 

communicate with its client in the global_path_planner_node. goalRemove request carries the 

coordinates of the center point to be removed. goalControl response carries the results of the 

server-side process, whether the goal remove was successful or not. Table 3.12 explains the 

fields of the request and response related to goalRemove. 

Table 3.12 goalRemove service message structure 

 Data field type Data field name Description  

goalControl request 

Float32 x X coordinate 

Float32 y Y coordinate 

Float32 z Z coordinate 

goalControl response bool success Success of removal 

3.2.5.2.3. baseDrive 

The baseForward and baseReverse services offered by the velocity_control_node uses this 

message pair to communicate with its clients in the global_path_planner_node. baseDrive 

request carries the coordinates of the position the robot has to reach and the baseDrive response 

carries the results of the movement, whether the robot was able to reach the point or not. Table 

3.13 explains the fields of the response and request related to baseDrive. 

Table 3.13 baseDrive service message structure 

 Data field type Data field name Description  

baseDrive request 

Float32 x X coordinate 

Float32 y Y coordinate 

Float32 z Z coordinate 

baseDrive response bool success Success of reaching 
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3.2.5.2.4. baseRotate 

The baseRotate service offered by the velocity_control_node uses this message pair to 

communicate with its client in the global_path_planner_node. baseRotate request carries the 

angle the robot base has to rotate and the baseDrive response carries the results of the server-

side process, whether the robot was able to rotate or not. Table 3.14 explains the fields of the 

response and request related to baseRotate. 

Table 3.14 baseRotate service message structure 

 Data field type Data field name Description 

baseRotate request Flaot64 angle Angle to rotate 

baseRotate response bool success rotated or not 

3.2.5.2.5. systemControl 

The explore service offered by the global_path_planner_node uses this message pair to 

communicate with its client in the test_system_node. systemControl request carries the 

command to start the navigation and path planning process in the global_path_planner_node  

and the systemControl response carries the results of the server-side process, whether the whole 

area was successfully explored or not. Table 3.15 explains the fields of the response and request 

related to systemControl. 

Table 3.15 systemControl service message structure 

 Data field type Data field name Description  

systemControl request bool activate Command to start exploring 

systemControl response bool success rotated or not 
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4. Experimental Evaluation and Results 

The system testing was completed using the  Gazebo physics simulator [22] along with the 

ROS system. Kobuki Turtlebot robot model was used because its real-world robot and the 

simulation robot model both had a similar control interface. Figure 4.1 and figure 4.2 contains 

the Kobuki Turtlebot and figure 4.3 contains the simulated testing environment. 

 

Figure 4.3 Gazebo Virtual testing environment 

 

Figure 4.1 Back of Kobuki (virtual) Figure 4.2 Front of Kobuki (virtual) 
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4.1. Goal Identifier Testing  

A support system named “Goal Visualizer” was developed for the purpose of testing the Goal 

Identifier subsystem and visualizing the results. It contained an individual ROS node 

“test_goalIdentifier_node” as well as a ROS node & C++ object combination named 

“Goal_visualizer_node” and “VisualizerObject”. 

 

test_goalIdentifier_node is responsible for calling the “goalPosition” service and starting the 

Octomap analyzing the process. Goal_visualizer_node subscribes to the “centerArray” and 

“goalPoint” topics and then transfers those data to the VisualizerObject C++ object. The 

VisualizerObject converts those data into an Octomap and returns it back to the 

Goal_visualizer_node which publishes the Octomap under the topic “octomap_centers”. 

 

Table 4.1 contains the connections of the ROS node test_goalIdentifier_node with other nodes 

of the system, 

Table 4.1 test_goalIdentifier_node connections 

Type Name Callback Task 

Requested Services /goalPosition - Request goalPosition service 

Table 4.2 contains the connections of the ROS node goal_visualizer_node with other nodes of 

the system, 

Table 4.2 goal_visualizer_node connections 

Type Name Callback Task 

Subscribed Topics 

/centerArray arrayCallback update the Octomap with centerArray 

/goalPoint goalCallback update the Octomap with goal 

Published Topics /octomap_centers - Publish the created Octomap  
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Table 4.3 contains the functions of the C++ object VisualizerObject, 

Table 4.3 functions and functionality of VisualizerObject 

Function Functionality 
Input/output  

update_cluster_centers Updates the Octomap with new cluster centers  3D point array (input) 

update_nearest_cluster Updates the Octomap with goal  3D point (input) 

get_tree Creates the Octomap and returns it Octomap (output) 

 

Figure 4.4 visualizes the combined structure of the VisualizerObject & Goal_visualizer_node 

testing support system, 

 
Figure 4.4 Combined system of VisualizerObject and goal_visualizer_node 

Figure 4.2 shows the resulting Octomap after processing the center point array and goal 

position inside the VisualizerObject. 

update_cluster_centers 

update_nearest_cluster 

Get_tree 

arrayCallback 

goalCallback 

Publish Octomap_centers 

CenterArray 

goalPoint 

Octomap_centers 

VisualizerObject Goal_visualizer_node 

Figure 4.5 Undiscovered clusters' center points (red) and goal (green) 
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4.2. Velocity Controller Testing 

A separate system was developed for the purpose of testing the velocity controller system. It 

includes an individual ROS node named “test_velocityControl_node” which was created in 

order to call each of the services offered by the velocity_control_node and to request the motion 

planner to move the robot to specified places in the gazebo simulation environment.  

 

The velocity_control_node connects with the simulated Kobuki robot via kobuki_node 

wrapper which is available in ROS as a package. Figure 4.6 shows the structure of the 

test_velocityControl_node, 

 

Figure 4.6 Structure of test_velocityControl_node 

Figure 4.7 shows the combined systems of velocity_control_node and the 

test_velocityControl_node which was used to debug the velocity_control_node. 

 

Figure 4.7 Combined test_velocityControl_node and velocity_control_node 
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Motor power 
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4.3. Ground Evaluator Testing 

Since the ROS node was not implemented, the depth image from the camera could not be 

captured. The only testing that happened was focused on testing the ability to detect water using 

the color cue and texture cue. Figure 4.8 and figure 4.9 show the results of color and texture 

analysis. Blue color indicates where the mask values become positive (water detected). 

4.4. Path Planner Testing 

A separate ROS node named test_system_node was created as the client for the service 

“explore” advertised by the path_planner_node. In order to test the Path Planner subsystem, 

Velocity Controller and Goal Identifier subsystems had to be connected to it because the Path 

Planner is dependent on them. Due to this reason this subsystem test is the same as the whole 

system test. The details and results of the test are the same as in the next section. 

 

 

 Figure 4.9 Before(left) and after(right) analyzing for water (Image 1) 

Figure 4.8 Before(left) and after(right) analyzing for water (Image 2) 
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4.5. Whole system Testing 

The final simulation was done on the ROS gazebo with a 10m * 10m simulation environment. 

The robot model used was a Kobuki Turtlebot and the Microsoft Kinect was mounted on it as 

the RGBD camera. 

 

The motion planner consisted of the Goal Identifier,  Path Planner, Velocity Controller 

subsystems. The Ground evaluator subsystem was left out of the motion planner due to 

incompletion and less compatibility. Figure 4.10 contains images of the Grid map and the path 

calculation related to several stages of the navigation and mapping process that happened 

during the simulation.  
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Figure 4.11 shows images of several instances of the navigation and mapping that happened 

inside the ROS gazebo simulation environment. Figure 4.5 and 4.12 shows the Gazebo 

simulation environment. 

 

 

 

Figure 4.10 Grid map with obstacles (blue), padding (green) and path (red) 

Figure 4.11 Gazebo Testing Environment 
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Figure 4.12 Several Stages of Mapping and navigation process 
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4.6. Real-World Testing 

The motion planner system was directly implemented on the kobuki robot since it had the same 

control interface as the Kobuki robot model available in ROS Gazebo. The Freenecet package 

had to be used to connect with the Microsoft Kinect which was mounted on the kobuki robot. 

The control parameters of the real robot had to be reduced vastly from the values which were 

used on the simulation robot. These parameters included velocity, angular velocity, and scan 

radius. Higher velocity and angular velocity values used in the simulation robot tended to make 

the real robot unstable and caused odometry errors. The distance the real Kinect could see was 

also less than the distance the simulated Kinect could see. So, the scan radius also had to be 

reduced. 

 

The accumulation of odometry issues was faster and more prominent in the Real-world robot 

compared to the simulated robot which caused the real robot to fail after some time. Figure 

4.13 shows the first testing environment, figure 4.14 shows several stages of the map building 

and figure 4.15 shows several stages of path planning until the robot failed.  

 

 

 

 

 

 

 

 

 
Figure 4.14 First Testing environment 

Figure 4.13 Stages of first environment mapping 
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The robot performed much better in the second testing environment than the first due to the 

lack of a carpet in the second environment. It was able to map a large area and took a long time 

to fail than in the first testing environment. Figure 4.16 shows the second testing environment, 

figure 4.17 shows several stages of map building and figure 4.18 shows several stages of path 

planning until the robot failed. 

 

 

Figure 4.15 Navigation grid of the real environment testing 

Figure 4.16 Second Testing Environment 

Figure 4.17 Stages of  second environment mapping 
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The solution to the odometry issues would be to use a localization method to correct the pose 

data of the robot but since a pre-built map of the environment is not available, the solution 

would be to develop a camera-based visual localization system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 Navigation grid of the second environment 
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5. Conclusion 

The Goal Identifier subsystem was able to detect the environment and analyze it successfully 

through the Octomap framework. Velocity Controller subsystem also managed to move the 

robot successfully, but the speed was low due to the grid navigation approach. A better method 

needs to be designed, that is capable of filtering only the main points of a path, for the purpose 

of path simplification. 

 

Goal Identifier, Path Planner and Velocity Controller subsystems combination successfully 

managed to navigate the simulated environment. But during real-world testing, it failed to 

complete the navigation due to the accumulation of odometry errors. Lack of localization was 

recognized as the main reason for the accumulation of errors. Developing or using a map 

independent localization system such as a visual localization can be proposed as a feasible 

solution. 

 

The Ground evaluator subsystem which was left out due to lack of time and testing also needs 

to be incorporated into the motion planner. Capturing RGBD images along with the odometry 

could be a solution for the issue of mapping mud puddle areas onto the 2D grid  which was 

used for path planning. 

 

The main focus of this project, the development of a motion planner that uses point clouds to 

interpret the environment was successfully completed with good results. The opportunities it 

presented for future development work would make it much more efficient and usable in many 

other environments.  
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