
NAVIGATION PLANNING FOR A MULTI
ROBOT SYSTEM EXPLORING AN

UNKNOWN ENVIRONMENT SUPPORTED
BY VOLUMETRIC DATA

R.M.K.V. Ratnayake

208005L

Degree of Master of Science

Department of Computer Science & Engineering

University of Moratuwa

Sri Lanka

October 2021



NAVIGATION PLANNING FOR A MULTI
ROBOT SYSTEM EXPLORING AN

UNKNOWN ENVIRONMENT SUPPORTED
BY VOLUMETRIC DATA

R.M.K.V. Ratnayake

208005L

Thesis submitted in partial fulfillment of the requirements for the degree

Master of Science in Computer Science and Engineering

Department of Computer Science & Engineering

University of Moratuwa

Sri Lanka

October 2021



DECLARATION

I, Kalana Ratnayake, declare that this is my own work and this dissertation does

not incorporate without acknowledgment any material previously submitted for a

Degree or Diploma in any other University or institute of higher learning, and to

the best of my knowledge and belief it does not contain any material previously

published or written by another person except where the acknowledgment is made

in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to

reproduce and distribute my dissertation, in whole or in part in print, electronic

or other medium. I retain the right to use this content in whole or part in future

works (such as articles or books).

Signature: Date:

The above candidate has carried out research for the Masters thesis/dissertation

under my supervision.

Name of Supervisor: Dr. Chandana Gamage

Signature of the Supervisor: Date:

Name of Supervisor: Dr. Sulochana Sooriyaarachchi

Signature of the Supervisor: Date:

i

28/01/2022

28/01/2022

29/01/2022



ABSTRACT

Exploration and navigation in unknown environments can be done individually

or as a group of robots. The current state-of-the-art systems mainly use fron-

tier detection-based exploration approaches based on occupancy grids and are

available as either single robot systems or multi-robot systems.

In this research, we propose a two-stage octomap-based exploration system

for multi-robot systems that improve multi-robot coordinated exploration. We

also present a prototype robotic system capable of exploring an unmapped area

individually or while coordinating with other robots to complete the exploration

fast and efficiently. During single robot exploration, the proposed system only

uses the first stage of the two-stage system to evaluate the octomap of the envi-

ronment. This stage utilizes the state of voxels to calculate target locations for

navigation using a distance-based cost function. During multi-robot exploration,

the proposed system uses both stages of the two-stage system to explore the given

area. The second stage uses maps created by individual robots to create a merged

map. The merged map can be used to evaluate the environment using octomaps

to identify target locations for exploration and navigation.

We have also proposed a performance evaluation criterion for exploration sys-

tems considering the robot’s operation time, power consumption, and stability.

This criterion was used to evaluate the system and compare the performance of

the individual robot system against the multi-robot system as well as against

the state-of-the-art Explore-Lite system. Results of experiments show that the

individual robot system proposed in this paper is about 38% faster than the

Explore-Lite system, the multi-robot system using two robots is 48% faster than

the individual robot system, and the multi-robot system using three robots is

38% faster than the individual robot system.

Keywords: multi-robot system; exploration; path planning; navigation; octomap based

exploration; unstructured environment;
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Chapter 1

INTRODUCTION

1.1 Background

Robots are more suited to navigate, explore and map regions such as disaster-

struck regions, underground tunnel systems, underground cave systems, and un-

derwater trenches than humans due to their robustness, teleoperability, and repro-

ducibility compared to humans. Figure 1.1a shows a quadruped robot exploring

an underground cave system and Figure 1.1b shows a swarm of drones entering a

collapsed building for exploration. Usually, a single robot is operated by a single

operator or a team of operators [1] when navigating, exploring, or mapping in

the above applications. This operation approach usually limits the parallel oper-

ations to one or two robots in this kind of situation. However, we can improve

the speed and efficiency of task completion of robots by introducing autonomous

navigability and coordination with each other.

(a) A single robot exploring a cave; Source
:[2]

(b) A swarm of drones exploring a col-
lapsed building; Source:[3]

Figure 1.1: Robot systems used for exploration

There are various approaches for autonomous navigation, such as map-less

direct navigation [4], creation of navigability maps [5], and creation of occupancy

grids [6] [7] [8]. Among these, occupancy grid-based navigation is one of the most
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practiced approaches.

Exploration also has been developed through various approaches, and frontier-

based exploration is one of the popular methods. This approach uses occupancy

grids created for navigation to identify unexplored regions. Frontier-based algo-

rithms are geared towards free exploration and fail when the requirement is to

explore and map a predefined open space area such as an outdoor disaster site.

This research proposes a multi-robot system that can be extended freely by

adding more robots without modifying the internal structure of the server. This

system utilizes 3D representations of the environment for navigation and coor-

dinated exploration. The system has been developed as the second phase of a

disaster mapping robotic system currently being designed and developed in the

IntelliSense Lab of the Department of Computer Science and Engineering. We

developed a single robot system as the first stage [9] to explore an unknown envi-

ronment specified by boundaries. This research builds on top of the single robot

[9] to create the multi-robot system focusing on controlling multiple robots.

The proposed system in this thesis comprises two major system components.

The server system implements the map merging and coordination, whereas the

robot system implements a standalone exploration system that accepts explo-

ration goals from the server system.

1.2 Research Problem

The purpose of this research is to create a coordinated exploration and mapping

mechanism capable of guiding the robots such that the robots can explore and

map an unstructured unknown area with minimum overlap while increasing the

speed of exploration and efficiency compared to a single robot system. Accord-

ingly, the research problem is to,

"Creating a multi-robot system capable of fast coordinated exploration and

mapping with minimum region overlapping between robots."
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1.3 Research Objectives

Objectives of this research are as follows:

1. Design and development of a single robot system that can accept exploration

goals from outside and configure its internal parameters to support the new

task.

2. Design and development of a server system that can accept a variable num-

ber of robots and guide them to explore a given area.

3. Develop, test, and evaluate several instances of multi-robot systems with a

different number of robots.

1.4 Research Contributions

The research contribution can be identified as five outcomes:

• A two-stage octomap-based exploration system for multi-robot systems.

The first stage resides on the robot and guides the robot to explore the

given area. The second stage resides on the server and coordinates the

robots to explore a given area as a multi-robot system

• An exploration module that uses volumetric data to evaluate and explore

a given target area

• An server-based exploration system that uses volumetric data to evaluate

and guide robots to explore a given area.

• An autonomous multi-robot exploration system prototype that can explore

a given area as a robot cluster. We have implemented this system using

ROS and have shown that it performs as expected using Gazebo Physics

Simulator.

• A performance evaluation criteria for single and multi-robot systems, which

considers the time, energy, and stability of the robot.
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1.5 Publications

K. Ratnayake, S. Sooriyaarachchi and C. Gamage, "OENS: An Octomap Based

Exploration and Navigation System," 2021 5th International Conference on Robo-

tics and Automation Sciences (ICRAS), 2021, pp. 230-234, doi: 10.1109/ ICRAS-

52289.2021.9476592.

Received Excellent Oral Presentation of the session award

Scopus Indexed

1.6 Outline of Thesis

The rest of the thesis is organized as follows. Chapter 2 presents a review of liter-

ature on navigation, coordination, exploration, and mapping. Chapter 3 presents

the research methodology along with the techniques and systems discovered dur-

ing the literature review on navigation, coordination, exploration, and mapping.

Chapter 4 presents the design of the two-stage octomap based exploration sys-

tem. Chapter 5 presents the experiments that were performed, the results that

were collected, and the evaluation of the results. The last chapter contains the

conclusions and planned future work.
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Chapter 2

LITERATURE SURVEY

Navigation, coordination, exploration, and mapping are four main branches of

research related to robotics. Navigation systems focus on moving the robot from

one position to another, and exploration systems identify areas the robot has to

explore. Mapping systems focus on creating maps of the environment so that

the robot can visualize that environment and utilize them for navigation and

exploration. Coordination systems focus on inter-robot interaction in multi-robot

systems. In the following sections, we will review literature in these four areas of

research.

2.1 Navigation

We can divide robotic systems into three different categories: teleoperated, semi-

autonomous, and autonomous, depending on the utilized navigation approach.

An operator completely controls teleoperated robots while only setting waypoints

for semi-autonomous robots indicating the navigation path it should follow. Fully

autonomous robots navigate without the guidance of an operator.

Firefighters have used Semi-autonomous robots to map disaster zones [1] in

which the robot utilizes navigation points selected by a firefighter to calculate a

path while using a 3D laser scanner to create a map of the environment. This

system also supports the continuation of mapping from a previously stopped

location.

2.1.1 Environment Perception

Autonomous navigation systems need to be able to perceive and store the state of

the environment in order to calculate a path in it. Among the methods available

to store the state of the environment, a point cloud is one of the widely used

methods that enables the users to view and process the environment in a three-
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dimensional perspective. Figure 2.1 shows one instance of the point cloud. An

autonomous navigation system can utilize a mapping subsystem to create point

clouds using depth cameras, stereo cameras, or LIDAR sensors.

Figure 2.1: Viewing environment through a point cloud

Occupancy grids [10] are a medium to analyze the environment captured as

a point cloud probabilistically. These grids discretize the environment into a

two-dimensional grid consisting of cells and give each cell a probability of being

occupied. The cells can have three primary states as free, occupied, and unknown.

Path planning calculations based on occupancy grids generally consider cells with

the occupied state as obstacles.

The Octomap framework allows the generation of volumetric 3D environmen-

tal models [11] based on octrees and uses probabilistic occupancy estimation.

Similar to occupancy grids, octomap voxels also have three occupancy states

called free, occupied, and unknown. Figure 2.2 shows the corresponding octomap

for the point cloud shown in Figure 2.1.

2.1.2 Path Planning

The artificial potential field concept [12] is an approach that can be used on

occupancy grids to calculate a path. This approach calculates virtual repellent
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Figure 2.2: Viewing environment through an octomap

forces between the robot and obstacles and virtual attraction force between the

robot body and the goal and then uses these attraction and repellent forces to

calculate the lowest potential route between the robot and the goal.

As mentioned, a navigation system can use occupancy grids calculated using

point clouds to interpret static environments. However, additional processing

steps such as comparing occupancy grids taken at different points in time are

required to interpret the dynamic environments and identify dynamic obstacles

[7]. Identification of dynamic obstacles and prediction of their paths can also be

achieved if the kinematic information of the robot and kinematic information of

obstacles are known [8]. This information can be inserted into a new occupancy

grid and used for navigation planning along with the occupancy grid with static

obstacles.

Maier et al. have used octomaps to navigate a biped robot [13] in an enclosed

space. First, they have created an octomap of the enclosed space. The octomap

was then used to create an occupancy grid, which was used to navigate a bipedal

robot without colliding with obstacles in the room. Octomap framework has

also been used for motion planning of robot arm manipulators [14]. The motion

planner used a multi-layered 2D occupancy grid extracted from an octomap to
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interpret the environment. The height differences between the occupancy layers

were decided according to the shape and movement capabilities of the robot.

Octomaps can also be used to identify and overcome slopes and staircases [15]

by slicing the octomap at different heights to create several occupancy grids and

then using those to create a traversability map that considers slopes as traversable

areas. Rapidly exploring Random Tree algorithm can be used to calculate a path

on the traversability map.

Schmid et al. have used flying robots to map indoor and outdoor buildings

[16] with a ’waypoint following’ approach. This system uses octomaps to identify

and avoid 3D obstacles in the environment while following the path set using

waypoints.

Path planning can also be done without using occupancy grids or octomaps.

In such scenarios, one approach to identify traversable floor areas is the use of

edge detection [4]. Another approach is to use a depth image to identify obstacles

and floors and use a color image to identify roads [17]. The floor area the robot

can navigate can then be separated and identified using margin lines, which are

the lines that separate obstacles and ground and roads.

2.1.3 Summary

Table 2.1 includes a summary of methods available for environment modelling.

Table 2.1: Summary of environment perception approaches

Approach
Data

structure
Primary data Secondary Data Ref.

Point

Cloud
1D Array XYZ coordinates RGB values -

Occupancy

Grid
2D Array

Probability of

occupancy
- [10]

Octomap Octree
Probability of

occupancy
RGB values [11]
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Table 2.2 includes a summary of methods available for general path planning.

Table 2.2: Summary of path planning approaches

Approach Input Data Remarks Ref.

Artificial

potential Field

Occupancy

grid

Calculate virtual forces between

robot, obstacle and goal and

follow lowest potential route

[12]

Comparing

occupancy

grids

Occupancy

grid

Identify dynamic obstacles in the

map by comparing occupancy

grids with a time interval

[7]

Overlay

kinematic

information on

occupancy

grid

Occupancy

grid

Insert kinematic information of

robot and obstacles into a new

cost map layer and path plan

with obstacle avoidance

[8]

Occupancy

grid for biped

robot

navigation

Octomap

Generate an occupancy grid

from the data available in the

octomap and biped robot

constraints

[13]

Multi-layered

occupancy

grids for arm

manipulation

Octomap

Generate multiple occupancy

grids considering the shape and

movement capabilities of robot

arm

[14]

Traversability

Map
Octomap

Slice octomap at different heights

and calculate several occupancy

grids and combine them to

create the traversability map

which includes stairs and steps

[15]

Obstacle

avoidance
Octomap

Directly use octomaps to identify

and avoid obstacles in the path
[16]
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Separate

traversable

floor

Point cloud

Separate floor and use edge

detection to identify traversable

area.

[4]

Identify floor

using

sightlines

Color and

Depth

Images

Use depth image to identify floor

and obstacles, color image to

identify roads. Utilize sightlines

and identified data to identify

traversable area

[17]

2.2 Coordination

Coordination between robots in a multi-robot system can be achieved in several

different ways. In this section, we mainly consider two approaches. One approach

is to divide the area into several regions and allocate them to robots in the system.

Another approach is to divide robots into teams, explore the area, and assign

different exploration targets during operation.

2.2.1 Division of Map

The division of the map approach focuses on reducing the overlap in the maps

created by the robots. One implementation named "zone partitioning" shown in

Figure 2.3a divides the map into partitions depending on the robot’s position and

assigns each partition to a robot [18]. The robot can then identify unexplored cells

in the assigned zone, cluster them and use the clusters to perform the exploration.

Once the map is updated, zones need to be re-calculated and assigned depending

on the new positions of the robots. Compared to using zone partitioning, which

divides area based on the position, the "circle partitioning" approach shown in

Figure 2.3b divides the map into fixed equal-sized segments [19] based on the

number of robots. It assumes that the center of the map is the center of a circle

and calculates a virtual circle that encompasses the whole map. Then the circle

is divided into partitions such that each robot can be assigned a single partition.
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The robot can then identify unexplored cells in the assigned zone and explore

similarly to the zone partitioning approach.

(a) Zone partition approach
(b) Circle partition approach

Figure 2.3: Division of map approaches

2.2.2 Association of Robots

The association of robots approach focuses on grouping robots into teams and

assigning them exploration targets during the operation. Divide and Conquer,

Buddy and Reserve are three different implementations of the association of

robots approach [20]. In the 𝑅𝑒𝑠𝑒𝑟𝑣𝑒 implementation, initially, only one robot

of the fleet conducts the exploration. When that robot detects more than one

exploration goal, resulting in a branching point, new robots from the fleet are

assigned to the new exploration goals. This implementation initially has a high

idling time since only one robot of the fleet is exploring but robots branching out

enables a lesser overlap related to exploration and mapping. In the 𝐷𝑖𝑣𝑖𝑑𝑒 𝑎𝑛𝑑

𝐶𝑜𝑛𝑞𝑢𝑒𝑟 implementation, all robots start exploration at once. When a branching

point is identified, the fleet is divided into separate groups such that each group

can explore a single branch. Compared to the reserve system, this has a low idling

time but has a high overlap related to exploration and mapping until a large num-

ber of branches are discovered such that each robot is assigned a single branch.

The 𝐵𝑢𝑑𝑑𝑦 implementation divides the fleet into small groups of two robots each.

Exploration starts with one group of robots exploring while others are waiting

12



at the starting position. Once the starting group reaches a branch, they divide

the group and follow the branching goals individually. If one of the single robots

discovers new branching points, those are assigned to a new robot group at the

starting position. This implementation reduces the idle time compared to the

𝑅𝑒𝑠𝑒𝑟𝑣𝑒 implementation but still results in more idle time than the 𝐷𝑖𝑣𝑖𝑑𝑒 𝑎𝑛𝑑

𝐶𝑜𝑛𝑞𝑢𝑒𝑟 implementation. When considering overlap related to exploration and

mapping, the 𝐵𝑢𝑑𝑑𝑦 implementation has less overlap than 𝐷𝑖𝑣𝑖𝑑𝑒 𝑎𝑛𝑑 𝐶𝑜𝑛𝑞𝑢𝑒𝑟

implementation and more than 𝑅𝑒𝑠𝑒𝑟𝑣𝑒 implementation.

Another implementation is to allow robots to map individually while avoiding

overlap as best as possible. In such implementations, map-based calculations that

need all the maps from all the robots can occur on a separate system that runs on

a robot or a separate computer. One such system is a centralized system where

maps from each robot are collected and then merged based on the robot’s initial

position [21]. All robots share their sensor logs to reduce the overlap between

maps even under communication failures in this system. This sharing of sensor

logs allows all the robots to identify regions where other robots have visited until

the communication failure, enabling them to ignore those regions and reduce

re-exploration during a communication failure.

2.2.3 Summary

Table 2.3 includes a summary of methods available for robot coordination.

Table 2.3: Summary of robot coordination approaches

Implementation Remarks Ref.

Zone Partition

Divide the map into partitions considering the

positions of robots and number of robots and

assign each robot a partition

[18]

Circle Partition

Imagine a circle on the map with centers

overlapping, divide the circle into segments and

assign each segment to a robot

[19]
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Reserve

One robot of the group explore until it reaches

a branching point, then informs other robots

idling at the starting position to explore other

branching paths

[20]

Divide and

conquer

All robots of the group explore at once and

divide into sub groups and explore separate

ways at a branching point

[20]

Buddy

Two robots of the group explore as a team until

it reaches a branching point, at which point

they divide and explore. when the individual

robots meet a new branch they inform robots

idling at the starting point to explore

[20]

Sensor log

sharing

Robots map while sharing the maps with a

server that handles map based calculations.

Sensor logs are also shared to avoid revisiting a

mapped area during a communication failure

[21]

2.3 Exploration

In this section, we consider exploration systems under two categories, exploration

systems used in single robot systems and exploration systems used in multi-robot

systems.

2.3.1 Single Robot Systems

Occupancy grids used for navigation calculations can also be used for explo-

ration with the concept of frontier-based exploration [22]. Yamauchi first pro-

posed frontier-based exploration for evidence grids that are conceptually similar

to occupancy grids. In the frontier-based exploration, the evidence grid cells

are categorized as occupied, unoccupied, and unknown in the frontier-based ex-

ploration, based on their prior occupancy probability and updated occupancy
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probability. Then the boundary cells bordering both unoccupied and unknown

cells were identified as frontier edge cells. Finally, the adjacent frontier edge cells

were grouped, and if the group contained more than a predefined number of cells,

it was identified as a frontier. Figure 2.4 contains an example of frontier calcula-

tion. The author selected the nearest frontier as the navigation goal for the robot,

and the distance was calculated using a depth-first search on the grid. When the

robot reached the frontier, it performed a 360-degree sensor sweep and updated

the map. Then the new frontiers were calculated using the updated map. This

process repeated until the whole accessible area was mapped.

Figure 2.4: Frontiers on an occupancy grid

Basic goal Seeking algorithms [23] and Modified Goal Seeking algorithms [23]

focus on using frontier-based exploration to reach a known goal region in an

unknown environment as shown in Figure 2.5. In this research, exploration goal

was selected from all available frontiers using a cost function named "Goal Seeking

Index," which was calculated for each frontier considering the distance to frontier

from the robot and the distance to goal from the frontier. Ultimately the frontier

with the maximum GSI was selected as the navigational goal. This approach

enabled the robot to reach the goal region without exploring all the frontiers.

BGS had the issue of falling into trap-like situations when the sensing region was

explored entirely, and the path to the goal region was blocked due to obstacles.

This issue was solved in MGS by allowing the algorithm to select a frontier outside
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the sensing region when a trap-like situation was detected.

Figure 2.5: Reaching a known position in an unknown area in goal-seeking algo-
rithms

The Wave-front Frontier Detector algorithm [24] used BFS, to search the un-

occupied cells of the occupancy grid to identify frontiers as shown in 2.6. Since

accessible frontier points are always adjacent to unoccupied grid cells, this en-

abled much faster grid processing. To further improve the frontier identification,

Keidar et al. also proposed to process the raw laser scanner readings in the Fast

Frontier Detector algorithm [24]. In this algorithm, they first had to sort the laser

scanner readings according to angle, detect contours from the readings, then de-

tect frontiers, and update previous frontiers. They proved that this approach was

faster than using the occupancy grids.

Quick Goal Seeking algorithm [25] divides the occupancy grid into four quad-

rants and focuses only on exploring the quadrant with the goal region. Trap-like

situations where frontiers in the selected quadrant became unreachable were han-

dled by enabling the algorithm to select frontiers from other quadrants during

such situations.

Octomap framework has been used to model large structures such as monu-

ments and buildings [26] with a ground robot using an approach similar to the wall
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Figure 2.6: Searching the occupancy grid using BFS

following to map the structure’s perimeter. If the system detected an unmapped

cavity area, the robot proceeded to explore them individually.

Explore-Lite exploration system [27] is one of the most popular greedy frontier-

based exploration systems readily available in ROS. This system uses occupancy

grids calculated by a separate system such as a 𝑆𝐿𝐴𝑀 𝑆𝑦𝑠𝑡𝑒𝑚 to calculate

frontiers and depends on the ROS Navigation Stack developed by Willow Garage

for path planning and controlling of the robot.

2.3.2 Multi-Robot Systems

In the multi-robot version of frontier-based exploration, [28] each robot maintains

a global evidence grid updated by local evidence grids created and shared by other

robots in the system. This global map allows for decentralized implementation,

which enables independent exploration and robustness to individual robot failure.

Still, it also has the disadvantage of having possibilities for the robots to target

the same frontiers and block others during exploration.

Frontiers can be identified from a shared occupancy grid, and they can be

assigned to robots in the system using a cost function that considers the distance
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to each frontier from the robot and the number of other robots moving to that

frontier or nearby frontier [21]. This cost function allows the robots to not select

frontiers near other robots and effectively cover a large area.

Another way to assign frontiers is to divide the exploration area into zones

and assign each zone to robots in the system as shown in the Figure 2.3a. The

zone partitioning approach calculates zones depending on the robot’s position and

assigns each zone to a robot [18]. The robot then can calculate unexplored cells in

the zone and perform the exploration. Once the map is updated, zones need to be

re-assigned depending on the new positions. Compared to using zone partitioning,

which is based on the position, the circle partitioning method shown in Figure

2.3b, divides the map into fixed segments [19] based on the number of robots.

The circle is divided into partitions such that each robot can be assigned a single

partition. Robots then use frontier exploration to explore assigned partition.

Communication failure during multi-robot coordination can be a significant

issue that can cause the robots to explore the whole area individually. One

solution is to incorporate communication signal strength into the frontier selection

cost function, [29] enabling the robot to traverse areas with good signal strength.

Another approach for multi-robot exploration is to collect enough information

such that the rest of the information can be accurately estimated based on that

as proposed in [30]. This method is mainly useful for tasks such as temperature

variation mapping that allows for data estimation. The proposed system is a

centralized system where the central station auctions the exploration tasks among

the robots in the network. Robots bid for tasks and, if won, follow the path and

explore until enough information is collected.

2.3.3 Summary

Table 2.4 includes a summary of methods available for exploration.

Table 2.4: Summary of approaches for exploration

Approach Category Remarks Ref.
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Frontier-based

Exploration

Single

robot

Introduces the concept of frontier based

exploration that uses evidence grids
[22]

Basic Goal

Seeking

algorithm

Single

robot

Designed to reach a known position in

an unknown environment. Fails when

sensor region has been explored and

goal is blocked by obstacles

[23]

Modified Goal

Seeking

algorithm

Single

robot

Similar to Basic Goal Seeking

Algorithm but when sensor region has

been explored and goal is blocked by

obstacles, picks exploration point from

outside sensing region

[23]

Wave-front

Frontier

Detector

Single

robot

Use BFS to expand free space. allows

to detect frontiers faster
[24]

Fast Frontier

Detector

Single

robot

Process the sensor data directly

without using an occupancy grid
[24]

Quick Goal

Seeking

algorithm

Single

robot

Divide the map into quadrants and

explore the quadrant with the goal. In

a trap-like scenario, select explore a

neighbouring quadrant

[25]

Wall following

on Octomap

Single

robot

explore around monuments with a wall

following like approach
[26]

Explore-Lite

system

Single

robot

Explore using greedy frontier based

exploration on occupancy grid
[27]

Frontier-based

Exploration

(Multi-robot)

Multi

robot

Maintain a global evidence grid in each

robot and use local evidence grids

shared by all robots to update the

global grid

[28]
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Shared

occupancy

grid

Multi

robot

Use a shared occupancy grid to identify

frontiers and use a cost function to

assign frontiers to each robot

[21]

Zone partition
Multi

robot

Divide area among robots considering

the position and assign them each sub

area to explore like in single robot

exploration

[18]

Circle

Partition

Multi

robot

Divide the area into sectors of a circle

and assign each to a robot to explore

like in single robot exploration

[19]

Incorporate

signal strength

to cost

function

Multi

robot

Incorporate communication signal

strength to frontier selecting cost

function and reduce the risk of

communication failure

[29]

Collect the

minimum data

Multi

robot

Collect minimal data required to infer

the data in the other areas
[30]

2.4 Mapping

Mapping of the environment needs to have a perfect position calculation in order

to create a perfect map. However, since all mechanical systems tend to have errors

or develop errors over time, most mapping systems are bundled with a localization

system that uses details in the map itself to calculate the afro mentioned error

and support mapping systems to create a good quality map. These two systems

together are called Simultaneous Localization And Mapping systems. Our review

first looks at simple single robot SLAM systems, then SLAM systems that support

multi-session mapping and multi-robot mapping concepts.
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2.4.1 Simple Mapping Systems

HectorSLAM [31] is a simple SLAM system that uses occupancy grids for mapping

and localization, allowing for three-dimensional movement. It uses LIDAR scans,

3D EKF, and scan matching techniques to estimate the robot’s position and

correct it.

ORBSLAM [32] is a SLAM system that takes images from monocular cam-

eras as input for localization and mapping, whereas ORBSLAM2 [33] is its second

generation SLAM system that supports monocular, stereo, and RGB-D images

for localization and mapping. Both systems extract ORB features from images it

receives as input and use them to estimate the position error. ORB-SLAM uses

motion-only bundle adjustment for tracking and place recognition for relocaliza-

tion. With stereo and RGB-D cameras introduced in ORBSLAM2, generated

depth images can be used for tracking.

2.4.2 Multi-session Mapping Systems

Multi-session mapping runs on the robot itself, and unlike a simple SLAM system,

these systems create separate maps when tracking is lost. Multi-session mapping

systems use PRM to identify common regions in the maps and to merge them.

Figure 2.7 shows a scenario where tracking has been lost. “Current map” in the

upper diagram has become the “map 3” in the lower diagram and a new map has

been created to hold sensor data.

ORBSLAM-atlas [34] is an extension to the ORB-SLAM system that adds

multi-session mapping capabilities. The system has a place recognition database

that manages detected key-frames of all the maps. If all the map regions identified

by the PRM are in the active map, it is considered a loop closure, and if map

regions identified by the PRM are on different maps (apart from on the active

map and apart on a static map), it is considered a map merge.

ORBSLAM3 [35] is the third generation of the ORBSLAM system, introduc-

ing the ORBSLAM-atlas mentioned above to the ORBSLAM system and further

improving the core systems. This system provides monocular and stereo visual-
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Figure 2.7: Abstract design of multi-session mapping systems

inertial SLAM, multi-session mapping with high recall place recognition, and an

abstract camera representation that removes camera dependencies.

RTAB-Map [36] is a multi-session mapping supported SLAM system that

takes LIDAR, depth cameras, monocular cameras, and stereo cameras data as

inputs for localization and mapping. The system also includes a memory man-

agement subsystem that handles the pose-graph loaded onto the system memory

to support long-term mapping without an issue. This subsystem also enables the

system to store and maintain point clouds, identified features without discard-

ing them. This system uses appearance-based localization and supports visual

odometry and ICP odometry when the robot does not contain odometry sensors

or has faulty odometry sensors.

2.4.3 Multi-robot Mapping Systems

Multi-robot mapping systems collect data from several robots and create a merged

map. This mapping system could be deployed on a separate computer called a

server if it used Server-Client system architecture or on the robots itself if it used

distributed system architecture. In Server-Client systems, as shown in Figure 2.8,

the client contains a tracking system for localization and the server contains maps
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and PRM for map merging. Maps are created when a new robot joins the system

or when an existing robot loses tracking. The systems that follow distributed

system architecture uses map sharing and caching techniques to share maps with

each other.

Figure 2.8: Abstract design of multi-robot mapping systems

CCM-SLAM [37] is a monocular image-based SLAM system that supports

multi-robot mapping. The system has two components, a server component, and

a client component. The client component that runs on the robot has a visual

odometry system that maintains a local map with a limited number of key-frames

used for real-time localization. The robot offloads heavy computational calcula-

tions such as place recognition, global optimization, and redundancy detection

of the map to the server component. The server maintains a separate map for

each robot until a common overlapping area can be identified, at which point the

maps get merged. Since this system has been divided into two parts, network

delays and failures can disrupt the mapping process.

C2TAM [38] is another cloud-based multi-robot mapping supported SLAM

system that uses monocular images. In this system, tracking occurs on the robot,

and mapping and place recognition occurs on the server-side. Relocation occurs

both in robot and server because if the localization lost time is high, the robot

can be in a completely different location that requires a large amount of process-

ing power to calculate. Since this system has also been divided into two parts,

network delays and failures can disrupt the mapping process.
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FastSLAM2.0 [39] introduces batch processing to cloud-based SLAM systems.

In this approach, each robot creates a local map and shares it with the cloud

server. The server collects local maps and inter robot-robot observations. If the

overlap between maps is above a threshold, it uses the overlaps to calculate the

transformation between the local map and the robot positions. If the overlap is

less than the threshold, the server uses inter robot-robot observations to calculate

the transformation. Then it executes the map transform using the calculated

transformation as a Hadoop Map/Reduce task.

DDF-SAM [40] describes a decentralized SLAM system back-end that imple-

ments a distributed mapping system. This system first uses single robot SLAM

to create a map of the environment which is then shared among the other robots

of the system. All the robots maintain a cached set of local maps of other robots,

enabling them to share maps of third-party robots with the robots they connect.

This implementation allows map sharing between robots that do not meet di-

rectly. A neighborhood map is created using landmarks on each local map using

a constrained factor graph during its mapping process.

Map merge [27] is another system that implements multi-robot mapping. This

system supports two approached initial position known merging and initial po-

sition unknown merging. The former approach creates a global map by simply

transforming each map and merging it using the initial positions to calculate the

relative transformation. The latter extracts key points and compares features to

identify a valid transform between maps. The initial position is known merging is

stable, and the initial position unknown merging depends on the overlap between

the maps and features recognition accuracy, making it comparatively unstable.

ORBSLAMM [41] is an extension to the ORB-SLAM system, which adds the

functionality of multi-session mapping and multi-robot mapping. This system

adds a processing thread that handles multi-mapping in addition to the three

threads already available with the ORB-SLAM system. This thread accepts dif-

ferent maps created by odometry failures (multi-session mapping) and different

maps created by separate robots (multi-robot mapping). The newly introduced

thread implements map insertion, matching, loop closing, and optimization.
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2.4.4 Summary

Table 2.5 includes a summary of methods available for environment mapping.

Table 2.5: Summary of literature related to mapping

Name Type Remarks Ref.

HectorSLAM Basic

Uses occupancy grids for mapping and

localization and supports three

dimensional movement

[31]

ORBSLAM Basic

Extract ORB features from monocular

images, use motion only bundle

adjustment for tracking and place

recognition

[32]

ORBSLAM2 Basic

Extract ORB features from monocular

images, depth data from depth images

and use motion only bundle adjustment

for tracking and place recognition

[33]

ORBSLAM-

Atlas

Multi

session

Use a place recognition database to

track key frames across several maps

and attempt to merge those maps

[34]

ORBSLAM3
Multi

session

Integrate ORBSLAM-Atlas with

ORBSLAM core system for multi

session capabilities and further improve

cores functionality

[35]

RTAB-Map
Multi

session

Store sensor data in a pose graph and

use feature matching, ICP methods to

align them. Has memory management

for long duration operations

[36]
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CCM-SLAM
Multi

robot

Only monocular images. Robot runs

visual odometry while server runs place

recognition, global optimization and

map management. Network issues can

affect the performance

[37]

C2TAM
Multi

robot

Only monocular images. Robot runs

tracking while server runs place

recognition and map management.

Relocation occur on both. Network

issues can affect the performance

[38]

FastSLAM2.0
Multi

robot

A cloud based SLAM system that uses

batch processing for map transform.

Robots share their maps with server

and transform is calculated using

overlap or robot-robot observation

[39]

DDF-SAM
Multi

robot

Share own and third party maps with

other robots in the system and

calculate a neighbourhood map. Only

proposes the back-end system for map

sharing and merging

[40]

Map-Merge
Multi

robot

Only focuses on map merging and no

support for localization. supports

feature based merging and initial

position known merging

[27]

ORBSLAMM
Multi

robot

Supports multi robot and multi session

mapping. Extension to the ORBSLAM

system that allows for new map

creation for tracking failures and robot

joining

[41]
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Chapter 3

Methodology

3.1 Introduction

This section discusses the selected methodologies for the two components pro-

posed in this research, a server system and a robot system. The literature review

presented in the previous chapter has been analyzed against the requirements of

each system, and selected techniques and data structures are presented in the

following sections. The overview of methodology is illustrated in Figure 3.1.

3.2 Robot System

This system is expected to run on the robot and thus needs to be configured

according to the robot’s specifications. This system needs to communicate with

the server system and operate as a part of a multi-robot system. It should also be

able to operate individually as a fully functional exploration system without the

support of the server system during communication failures and when the area to

be explored is too small for a multi-robot system. Because of these requirements,

we decided to include a mapping subsystem, an exploration subsystem, and a

navigation subsystem as parts of the robot system. Each of the subsystems has

been explained in the following sections.

3.2.1 Mapping

The mapping subsystem running on the robot needs to create a map of the envi-

ronment for exploration and navigation. Since the robot needs localization capa-

bility for correct navigation, we decided to use a SLAM system as our mapping

subsystem. We elected to use a multi-session mapping system as the mapping

subsystem from the systems presented in the section 2.4.2.
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• Simple mapping systems discussed in section 2.4.1 lacked the functionality

required for our system compared to multi-session mapping systems.

• Multi-robot mapping system discussed in the section 2.4.3 could not be

used because it did not support operation as a single robot system when

required.

From the multi-session mapping systems available in the section 2.4.2, ORB-

SLAM3 and the RTAB-Map were more prominent since ORBSLAM3 had the

ORBSLAM-Atlas system integrated into it. The Table 3.1 includes a comparison

between the two systems.

Table 3.1: Summary of robot coordination approaches

RTAB-Map ORBSLAM3.

Sensor support

Monocular camera,

Stereo camera, RGBD

camera, 2D LIDAR, 3D

LIDAR

Monocular camera,

Stereo camera, RGBD

camera

Core technique

used

Feature matching

(cameras), ICP (LIDAR)

Feature matching

(cameras)

Core structure

used

Pose-graph with sensor

data and extracted

features

Pose-graph with

extracted features

Long term

operation support

Dedicated memory

management system
Not available

Integrated

Octomap support
Available Not available

Output
Position Correction and

Point cloud (All Data)

Position Correction and

Point cloud (Keypoints)

Availability Tested ROS package 3rd party ROS wrappers

Based on the details present in the Table 3.1 we chose to use RTAB-Map

since it had an integrated octomap server, detailed point cloud output, and was
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available as a tested ROS package.

3.2.2 Exploration

The exploration subsystem running on the robot needs to be able to explore

independently during single robot instances and under the guidance of the server

system during multi-robot instances. To achieve this, we needed to design a

complete exploration system on the robot. Since this subsystem acts as the core

system for exploration in single robot and multi-robot instances, this would be

the first stage of the two-stage exploration system proposed in this research.

To achieve independence during operation, we designed the system based on the

literature presented in the section 2.3.1. From the environment modeling methods

presented in the section 2.1.1, we could use occupancy grids and octomaps to

evaluate the environment probabilistically.

Table 3.2: Summary of robot coordination approaches

Occupancy Grid Octomap.

States available
Free, Occupied,

Unknown

Free, Occupied,

Unknown

Dimensions Two Three

Z axis

compression

If the column of cells

contain certain number

of occupied cells,

corresponding grid cell is

considered occupied

None

Based on the comparison present in the Table 3.2 we chose to use octomaps

which are calculated based on the point clouds created by the mapping system, for

exploration calculation since it prevents the loss of data on the z-axis compared

to occupancy grids and allows us to identify unexplored regions throughout the

whole volume of space.
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3.2.3 Navigation

The navigation subsystem running on the robot needs to be able to navigate in-

dependently during single robot instances and under the guidance of the server

system during multi-robot instances. Though we selected octomaps for explo-

ration calculations, for navigation, we elected to use occupancy grids extracted

from the octomap for simplicity. In this implementation, we filtered the octomap

for obstacles while considering the height of the robot to consider only the obstacle

within the robot’s height limit.

3.3 Server System

This system is expected to communicate with the robots to collect data from

them and to guide them for efficient exploration. The system is only used as a

part of a multi-robot system either on a stationary computer or on a companion

computer on a field robot, along with an instance of a robot system. Because of

this, we decided to include a mapping subsystem, an exploration subsystem, and

a coordination subsystem as parts of the server system. Each of these subsystems

has been explained in the following sections.

3.3.1 Mapping

Based on the literature presented in the section 2.4.3, there were two significant

approaches we identified that could be used to design this subsystem, an initial

position known mapping where robots knew each others position at least relative

to a single robot and initial position unknown mapping, which utilized a place

recognition algorithm to estimate transformations between robots. The following

Table 3.3 contains the differences we identified through literature and the basic

experiments to evaluate both approaches.

Table 3.3: Summary of robot coordination approaches

Initial position known Initial position unknown.

Required overlap Not required large
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Time till merge None Considerable

Accuracy High
Depends on overlap and

features

Computational

time
Low High

Our initial position unknown mapping tests were based on feature matching

approaches, and they showed that a considerable overlap was required between the

maps created by robots. One reason for this could be the degradation of features

on the map due to the map creation process in the selected SLAM system. The

map was created by merging point cloud sensor data and distributing the error

detected during loop closing between the point clouds of the loop. Comparing

two maps that were created using this process on two separate computing devices

makes feature matching difficult compared to the feature matching of point cloud

sensor data taken from the same camera. Merging accuracy was also low, and

computational time was high due to the same above reason. Because of that,

we selected to use the initial position known approach for designing the mapping

subsystem of the server system.

3.3.2 Exploration

The exploration subsystem of the server system needs to function along with the

exploration subsystem of the robot system. Since this system assists the explo-

ration subsystem of the robot during multi-robot instances, this subsystem act as

the second stage of the two-stage exploration system proposed in this research.

This system follows the same design principle as the exploration subsystem of the

robot system but uses the merged point cloud map created by the mapping sub-

system of the server system instead. We selected to use octomaps to convert the

merged point cloud map into a map that can be used for exploration calculations

similar to the exploration subsystem implementation of the robot system.
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3.3.3 Coordination

Division of map approaches discussed in the section 2.2.1 and Association of

Robots methods discussed in the section 2.2.2 are the primary approaches for

coordination we identified during the literature review. Following were the con-

clusions we reached after evaluating each method against our system structure.

• The server system can derive the robot’s position from the starting posi-

tion and odometry at any time because we selected known position mapping

for the server-side mapping subsystem. Availability of the robot’s position

allowed us to use the "Zone partition method" from the beginning of explo-

ration to assign exploration targets and avoid overlapping the exploration

area.

• "Circle partition method" causes the robots to move through sectors as-

signed to other robots causing overlapping and repetitive exploration unless

the robots enter the given area from all sides or to their respective sector

directly that makes this approach less effective than the "Zone partition

method."

• In methods discussed under Association of Robots, all robots take the same

path until they reach a branching point and then take the branching paths

as described in each respective method. Following the same path means

that this approach also causes overlapping of exploration areas and is less

effective than the "Zone partition method."

We selected the "Zone partition method" from the approaches mentioned in

the section 2.2.1 over Association of Robots methods in section 2.2.2 and "Circle

partition method" in section 2.2.1 due to the reasons we presented above.

3.4 Summary

Figure 3.1 illustrates the overview of methodology including technologies selected

for each subsystem, and selected input and output data
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Figure 3.1: Overview of Methodology
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Chapter 4

System Design

4.1 Introduction

Figure 4.1 illustrates the expected structure of the system proposed in this re-

search. As shown in Figure 4.1, the robots share the robot’s name, point cloud,

initial position, and the robot’s position with the server while the server shares

the goals for each robot for exploration.

Figure 4.1: Expected use of the multi-robot system

The proposed system should create a merged map of the intended area using

maps created by individual robots. Then it should identify unexplored regions in

the merged map and assign exploration tasks to each robot so that the intended

area can be explored efficiently. Considering these requirements, we use Server-

Client architecture to create the system. We use point clouds as maps since

they allow us to visualize and store the environment with a three-dimensional

perspective.

The server system calculates the relative position of each robot relative to a

selected leading robot named 𝑟𝑜𝑜𝑡 and uses those relative positions to calculate

the relative transformations of each robot. Once calculated, the relative transfor-

mations transform point clouds and merge them into a single point cloud. The
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merged point cloud is used to calculate an octomap that enables the statistical

evaluation of the three-dimensional space. The octomap is used to identify unex-

plored regions in the intended area, and these regions are assigned to each robot

depending on their positions. An exploration goal is identified for each robot and

is assigned to that robot from the assigned area.

Each robot system act as a client component of the architecture. The robot

system creates a point cloud of the environment using a SLAM system. This

point cloud is used for on-robot calculations as well as transmitted to the server

for remote processing. A robot system consists of a 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑢𝑙𝑒 for robot

exploration calculations, a 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑀𝑜𝑑𝑢𝑙𝑒 for path planning and module co-

ordination, a 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑀𝑜𝑑𝑢𝑙𝑒 for controlling the robot, and a 𝐶𝑙𝑖𝑒𝑛𝑡𝑀𝑜𝑑𝑢𝑙𝑒

for communicating with the server. The 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑢𝑙𝑒 performs calcula-

tions similar to the server, and in multi-robot system instances, it is used by the

robot in between server connections when the communication gap becomes more

significant and also used as a backup system in case of a communication failure.

4.2 Server System

The server system collects data from all the robots available and processes them

to identify unexplored regions. Once identified, it guides the robots to explore

the identified unexplored regions. Figure 4.2 illustrates the high-level design of

the processing pipeline implemented in the server system.

In order to allow the robots to join at any time and allow a variable number

of robots to join, we designed the system with one input port and multiple input

processing threads. Figure 4.2 illustrates an instance of the system with 𝑛 robots

and 𝑚 input processing threads. Input processing threads extract data such

as robot name, point cloud, position, initial position, and orientation and store

them separately based on the robot’s name separately. If a previous entry exists

under the robot’s name, those are updated, and otherwise, a new entry is created

based on the name. The input data processing thread can also be extended

to perform additional operations on input data such as filtering, clustering, and
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Figure 4.2: Abstract design of the server system with 𝑛 robots and 𝑚 input
processing threads

plane extraction. The extracted data are used to calculate the merged point cloud,

calculate the octomap and ultimately identify the unexplored regions. Figure 4.3

illustrates the pipeline from merging the point clouds to the selection of goals in

detail. This pipeline has not been optimized and runs on a single thread. The

following sub-sections contain a detailed description of each step from merging

the point cloud to filtering goals.

4.2.1 Merging of Point Cloud

First, for each robot, a relative transformation is calculated using the initial

position of the robot. This transformation is calculated relative to a robot named

𝑟𝑜𝑜𝑡, which can be any robot from the robots in the system that needs to be

selected at the start of the operation of the server system. This robot is considered

the leading robot, and the point cloud created by this robot is used as the base

point cloud for map merging. The overall area to be explored by all the robots

need to be defined relative to the 𝑟𝑜𝑜𝑡 robot.

All points in the point clouds from all the robots are transformed into the 𝑟𝑜𝑜𝑡

robot’s coordinate frame (equation 4.1). The transformed point clouds are merged

onto a single point cloud that visualizes the total area explored and mapped by

all the robots.
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Figure 4.3: Detailed design of processing stages from merging of point clouds to
filtering of goals

𝑟𝑜𝑜𝑡𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑 =𝑟𝑜𝑜𝑡 𝑇𝑟𝑜𝑏𝑜𝑡
𝑟𝑜𝑏𝑜𝑡𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑 (4.1)

4.2.2 Calculation of Octomap

The merged point cloud is used to calculate an octomap of the environment. The

point cloud is used to estimate unknown and known cells in the octomap. The

initial position of the 𝑟𝑜𝑜𝑡 robot is considered the sensor origin, and based on

that, ray casting is performed. Ray casting allows differentiating known cells

between occupied and unoccupied cells.

4.2.3 Evaluation of Octomap

The calculated octomap is divided into voxel clusters, and the voxels in each

cluster are evaluated for their occupancy state. The evaluation checks for the

percentage of unknown cells in each cluster, and if it is larger than a predefined

value, the cluster is considered an unexplored cluster, and its center is selected as

a candidate goal for exploration. Then the unreachable goals are removed from
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the candidate goals using a different goal set maintained on the server named

𝑈𝑛𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝐺𝑜𝑎𝑙𝑠. The Algorithm 1 explains this procedure.

Algorithm 1: Exploration Goal identification using Octomap
Input: Octomap, Boundaries of the area to be explored, octomap

resolution, cluster resolution, percentage, Unreachable Goals
Output: Exploration goal coordinates

1 𝑁𝑥, 𝑁𝑦, 𝑁𝑧 ← cluster counts along each of X,Y,Z dimensions
2 𝐺𝑜𝑎𝑙𝑠← ∅
3 for 𝑖← 0 to 𝑁𝑥 do
4 for 𝑗 ← 0 to 𝑁𝑦 do
5 for 𝑘 ← 0 to 𝑁𝑧 do

/* here 𝑖, 𝑗, 𝑘 are not distance measures */
6 𝑢𝑛𝑘𝑛𝑜𝑤𝑛𝐶𝑜𝑢𝑛𝑡,← 0
7 calculate 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑒𝑛𝑡𝑒𝑟 using 𝑖, 𝑗, 𝑘, 𝑜𝑐𝑡𝑜𝑚𝑎𝑝 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛,

𝑜𝑐𝑡𝑜𝑚𝑎𝑝 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
8 calculate 𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥, 𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥, 𝑍𝑚𝑖𝑛, 𝑍𝑚𝑎𝑥 cluster boundaries

using 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑒𝑛𝑡𝑒𝑟, 𝑖, 𝑗, 𝑘, 𝑜𝑐𝑡𝑜𝑚𝑎𝑝 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟
𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

9 for 𝑎← 𝑋𝑚𝑖𝑛 to 𝑋𝑚𝑎𝑥 do
10 for 𝑏← 𝑌𝑚𝑖𝑛 to 𝑌𝑚𝑎𝑥 do
11 for 𝑐← 𝑍𝑚𝑖𝑛 to 𝑍𝑚𝑎𝑥 do

/* here 𝑎, 𝑏, 𝑐 are distance measures */
12 if point (a,b,c) not available in Octomap then
13 increment 𝑢𝑛𝑘𝑛𝑜𝑤𝑛𝐶𝑜𝑢𝑛𝑡

14 if 𝑢𝑛𝑘𝑛𝑜𝑤𝑛𝐶𝑜𝑢𝑛𝑡 ≥ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒*totalCellCount then
15 𝐺𝑜𝑎𝑙𝑠← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑒𝑛𝑡𝑒𝑟

16 for 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑𝐺𝑜𝑎𝑙 in 𝑈𝑛𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝐺𝑜𝑎𝑙𝑠 do
17 if 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑𝐺𝑜𝑎𝑙 is in 𝐺𝑜𝑎𝑙𝑠 then
18 remove 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑𝐺𝑜𝑎𝑙 from 𝐺𝑜𝑎𝑙𝑠

19 return 𝐺𝑜𝑎𝑙𝑠

4.2.4 Filtering of Goals

Once the candidate goals are calculated, the relative transformations are used to

calculate the robot’s position (equation 4.2) in the coordinate frame of the 𝑟𝑜𝑜𝑡

robot in which the rest of the calculations occur.

𝑟𝑜𝑜𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =𝑟𝑜𝑜𝑡 𝑇𝑟𝑜𝑏𝑜𝑡
𝑟𝑜𝑏𝑜𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (4.2)
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Two processing stages follow; in the first stage, candidate goals need to be

assigned to the robots. In the second stage, the most reasonable goal for each

robot needs to be selected from the set of candidate goals assigned to each robot.

Two separate cost functions are used in the two stages.

The first stage has been designed based on the 𝑉 𝑜𝑟𝑜𝑛𝑜𝑖 𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. Eu-

clidean distance from the robot to the goal has been used as the cost function to

divide the candidate goals among the robots. If the set of robots 𝑅, set of goals

𝐺, euclidean distance cost function 𝑑 and 𝐴𝑘, 𝐴𝑗 (𝑗, 𝑘 ∈ 𝑅) are two robots, the

goal region 𝑍𝑘 associated with robot 𝐴𝑘 is the set of all goals in 𝐺 whose distance

to 𝐴𝑘 is less than to other robots 𝑇𝑗 where 𝑘 ̸= 𝑗. 𝑍𝑘 can also be denoted as in

equation 4.3

𝑍𝑘 = {𝑔 ∈ 𝐺 | 𝑑(𝑔, 𝑇𝑘) ≤ 𝑑(𝑔, 𝑇𝑗) ∀ 𝑗 ̸= 𝑘 𝑗, 𝑘 ∈ 𝑅} (4.3)

The robot-goal pair with the least cost is selected in the first implementation

stage, resulting in goals being assigned to its closest robot. The Algorithm 2

explains the implementation.

Algorithm 2: Assigning goals to robots
Input: Goals, Robots
Output: Goals Divided among robots

1 for 𝑔𝑜𝑎𝑙 in 𝐺𝑜𝑎𝑙𝑠 do
2 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑅𝑜𝑏𝑜𝑡← None
3 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒←∞
4 for 𝑟𝑜𝑏𝑜𝑡 in 𝑅𝑜𝑏𝑜𝑡𝑠 do
5 calculate 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 from robot to goal
6 if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 then
7 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
8 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑅𝑜𝑏𝑜𝑡← 𝑟𝑜𝑏𝑜𝑡

9 select 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑅𝑜𝑏𝑜𝑡 from 𝑅𝑜𝑏𝑜𝑡𝑠 and assign 𝑔𝑜𝑎𝑙 to it

10 return 𝑅𝑜𝑏𝑜𝑡𝑠

In the second stage, euclidean distance has been used as the cost function to

select a goal for each robot from the candidate goals assigned to it. The goal with

the least cost was selected from the candidate goals assigned to each robot as the

selected goal for exploration. The Algorithm 3 explains the implementation.
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Algorithm 3: Selecting goals for each robot
Input: Robots
Output: Robots with one selected goal each

1 for 𝑟𝑜𝑏𝑜𝑡 in 𝑅𝑜𝑏𝑜𝑡𝑠 do
2 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐺𝑜𝑎𝑙← None
3 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒←∞
4 for 𝑔𝑜𝑎𝑙 in 𝑟𝑜𝑏𝑜𝑡 do
5 calculate 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 from robot position to goal
6 if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 then
7 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
8 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐺𝑜𝑎𝑙← 𝑔𝑜𝑎𝑙

9 𝑟𝑜𝑏𝑜𝑡← 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐺𝑜𝑎𝑙 as a selected goal for exploration

10 return 𝑅𝑜𝑏𝑜𝑡𝑠

After selecting a goal for each robot, they are transformed back into the

coordinate frame of the respective robot and transmitted from a single output

port as a single message. This message contains goals assigned to each robot and

the robot’s name, which allows for a variable number of robots to receive the

transmission. 𝐶𝑙𝑖𝑒𝑛𝑡 𝑀𝑜𝑑𝑢𝑙𝑒 in each robot listens to this port and receives the

transmission. Once received, it extracts the exploration goal intended for the host

robot using the host robot’s name as the search key. The extracted goals are then

transmitted to 𝑃𝑙𝑎𝑛𝑛𝑒𝑟 𝑀𝑜𝑑𝑢𝑙𝑒 for path planning to reach and explore them. If

any of these received goals cannot be reached, those goals are transmitted back

to the server by 𝐶𝑙𝑖𝑒𝑛𝑡 𝑀𝑜𝑑𝑢𝑙𝑒𝑠 through a separate port, and the server adds

them to the Unreachable goals set maintained in the 𝑆𝑒𝑟𝑣𝑒𝑟 𝑆𝑦𝑠𝑡𝑒𝑚.

4.3 Robot System

This system is based on the motion planner, [9] and the modules proposed in

this research are primarily based on several subsystems of the motion planner.

𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑢𝑙𝑒 is based on the Goal Identifier subsystem and focuses on

processing the octomaps to identify exploration goals. 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑀𝑜𝑑𝑢𝑙𝑒 is based

on the Path Planner subsystem focuses on path calculation required to reach goals

calculated or received by other modules, and 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑀𝑜𝑑𝑢𝑙𝑒 is based on the

Velocity Controller subsystem and focuses on controlling the robot as required.
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Combination of 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑢𝑙𝑒, 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑀𝑜𝑑𝑢𝑙𝑒 and 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑀𝑜𝑑𝑢𝑙𝑒

allows the system to perform as a single robot system. SLAM system manages

the localization and mapping process with input from the camera system, and the

octomap server system calculated octomaps using the point cloud data from the

SLAM system or sensor data from the camera system. Figure 4.4 illustrates the

high-level design of the robot system, including data and command flow between

modules.

Figure 4.4: Robot system structure when operating as a single robot system

Compared to the subsystems of motion planner [9], each module’s process

pipeline has been optimized and extended to support server coordinated multi-

robot functionality while retaining the ability to operate as a single robot system.

𝐶𝑙𝑖𝑒𝑛𝑡 𝑀𝑜𝑑𝑢𝑙𝑒 was newly designed to act as the interface between the modules

mentioned above and the server system when the robot system functions as a part

of a multi-robot system. It receives data from the server and transmits data to

the server. Figure 4.5 illustrates the high-level design of the entire Robot system,

including data and command flow between modules.

4.3.1 Simultaneous Localization and Mapping System

In this research, we have selected the RTAB-Map [36] system as the SLAM sys-

tem of our proposed robot system due to its ability for long-term operation and

the readily available point clouds. Internally the system maintains a pose-graph
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Figure 4.5: Robot system structure when operating as a multi-robot system

with nodes containing a time-based index, bag-of-words based on features, sensor

data, and edges containing rigid transformations. The system uses a bag-of-word

approach for loop closing. In addition to that, it also has an integrated octomap

server that allows us to run a single system instead of separate SLAM and oc-

tomap server systems. This octomap uses a point cloud calculated from the

SLAM system of octomap calculations. We use an RGB-D camera as an input

device and uses odometry data from the robot as input position data.

4.3.2 Exploration Module

Figure 4.6 illustrates the basic 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑢𝑙𝑒, which is based on the Goal

Identifier subsystem proposed as a part of the motion planner [9]. We have re-

placed the odometry-based position tracking used in the Goal Identifier subsystem

with a native position tracking system implemented in the 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑀𝑜𝑑𝑢𝑙𝑒. We

have also further optimized the processing pipeline compared to the Goal Iden-

tifier subsystem. Figure 4.6 illustrates the 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑢𝑙𝑒 operation when

the robot operates as a single robot system.

In addition to the above modifications, we have extended the 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛

𝑀𝑜𝑑𝑢𝑙𝑒 pipeline to allows it to be used in robot system instances in multi-robot

systems. The new functionality allows the 𝐶𝑙𝑖𝑒𝑛𝑡 𝑀𝑜𝑑𝑢𝑙𝑒 to resize the boundaries

of the area considered for exploration such that the goal assigned from the server
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Figure 4.6: Exploration module during single robot operation

can be accepted even if it exists outside the region specified at the start for each

robot instance. The ability to update the boundaries allows the robot system in-

stance to continue exploring the surrounding area of the assigned goal in between

server transmissions. Figure 4.7 illustrates the resultant system architecture of

the 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑢𝑙𝑒 after adding new functionality.

Figure 4.7: Exploration module during multi-robot operation

The 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑢𝑙𝑒 uses octomaps to evaluate the surroundings to iden-
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tify unexplored regions within specified boundaries. The octomap is divided into

clusters, and clusters are evaluated for their occupancy state. The evaluation

checks for the percentage of unknown cells in each cluster, and if it is larger than

a predefined value, the cluster is considered an unknown cluster, and its center is

selected as a candidate exploration goal. Then the unreachable goals are removed

from the candidate goals using a different goal set maintained on the exploration

module named 𝑈𝑛𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝐺𝑜𝑎𝑙𝑠. This is the same procedure used in the server

system, and thus The Algorithm 1 can be used to explain this procedure.

Once the candidate goals are filtered, a single goal must be selected as the

exploration goal from the set to be sent to the 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑀𝑜𝑑𝑢𝑙𝑒. Euclidean

distance was used as the cost function to select this. The goal with the least

cost was selected from among the goals for exploration and is transmitted to the

𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑀𝑜𝑑𝑢𝑙𝑒. If the 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑀𝑜𝑑𝑢𝑙𝑒 cannot calculate a path to reach the

selected goal, it transmits the goal back, and the 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑢𝑙𝑒 adds it to

the 𝑈𝑛𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝐺𝑜𝑎𝑙𝑠 set. Algorithm 4 explains the implementation.

Algorithm 4: Selecting a goal for exploration
Input: Goals
Output: One selected goal

1 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐺𝑜𝑎𝑙← None
2 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒←∞
3 for 𝑔𝑜𝑎𝑙 in 𝐺𝑜𝑎𝑙𝑠 do
4 calculate 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 from robot position to goal
5 if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 then
6 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
7 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐺𝑜𝑎𝑙← 𝑔𝑜𝑎𝑙

8 return 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐺𝑜𝑎𝑙

4.3.3 Planning Module

Figure 4.8 illustrates the basic 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑀𝑜𝑑𝑢𝑙𝑒, which is based on the Path

Planner subsystem proposed as a part of the motion planner [9]. We have re-

placed the odometry-based position tracking used on the Path Planner subsystem

with a native position tracking system implemented in the 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑀𝑜𝑑𝑢𝑙𝑒. We
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have improved the path conversion functionality to remove intermediate points in

the path when the path is straight, which improves the robot’s movement by re-

ducing the number of waypoints in the path and increasing the distance between

waypoints in the path. We have also further optimized the processing pipeline

compared to the Path Planner subsystem. Figure 4.8 illustrates the Planning

module operation when the robot operates as a single robot system.

Figure 4.8: Planning module during single robot operation

In addition to the above modifications, we have extended the 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑀𝑜𝑑𝑢𝑙𝑒

pipeline to allow it to be used in robot system instances in multi-robot systems.

One of the new functionality allows the 𝐶𝑙𝑖𝑒𝑛𝑡 𝑀𝑜𝑑𝑢𝑙𝑒 to resize the boundaries

of the area considered for path planning such that the goal assigned from the

server can be accepted even if it exists outside the region specified at the start

for each robot instance. This resizing allows the path planning calculations to

succeed even if the server assigned goal is outside the region considered in the

occupancy grid.

Another new functionality that we introduced was a multiplexer to select

between the goals from the server and goals from the 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑢𝑙𝑒. Mul-

tiplexer assigns a higher priority to goals from the server, which enables the

𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑀𝑜𝑑𝑢𝑙𝑒 to reach and explore regions outside the area specified at the
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start. We also added new functionality to report unreachable goals from the server

to the 𝐶𝑙𝑖𝑒𝑛𝑡 𝑀𝑜𝑑𝑢𝑙𝑒 to transmit the unreachable goal back to the server for fil-

tering. Figure 4.9 illustrates the resultant system architecture of the 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔

𝑀𝑜𝑑𝑢𝑙𝑒 after adding new functionalities.

Figure 4.9: Planning module during multi-robot operation

Unlike the Path Planner subsystem proposed as a part of the motion plan-

ner [9], 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑀𝑜𝑑𝑢𝑙𝑒 uses both octomap and boundaries to calculate the

occupancy grid. The occupancy grid is created by down projecting the octomap

within boundaries. As explained earlier, it uses a multiplexer implementation to

select between goals from the server and goals from 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑢𝑙𝑒. Once

the occupancy grid is calculated and the goal is selected, the module uses the

A* algorithm to calculate a path. It then converts the path to real-world co-

ordinates and transmits waypoints along the path to 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑀𝑜𝑑𝑢𝑙𝑒 to move

the robot to reach the selected goal. Algorithm 5 contains the explained control

sequence. Though 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑀𝑜𝑑𝑢𝑙𝑒 coordinates both 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑢𝑙𝑒 and

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑀𝑜𝑑𝑢𝑙𝑒 similar to Path Planner subsystem, it does not coordinate but

only communicates with the new 𝐶𝑙𝑖𝑒𝑛𝑡 𝑀𝑜𝑑𝑢𝑙𝑒.

46



Algorithm 5: Path planning to reach the goal
Input: Octomap, position
Output: Movement commands to 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑀𝑜𝑑𝑢𝑙𝑒

1 𝐼𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛← 𝑇𝑟𝑢𝑒
2 while 𝐼𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 do
3 Update map
4 𝑔𝑜𝑎𝑙← 𝑠𝑒𝑟𝑣𝑒𝑟𝐺𝑜𝑎𝑙 or 𝑚𝑜𝑑𝑢𝑙𝑒𝐺𝑜𝑎𝑙 from multiplexer
5 calculate occupancy grid
6 calculate path
7 while path is not valid do
8 if 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is blocked then
9 move robot

10 else
11 remove goal

12 𝑔𝑜𝑎𝑙← 𝑠𝑒𝑟𝑣𝑒𝑟𝐺𝑜𝑎𝑙 or 𝑚𝑜𝑑𝑢𝑙𝑒𝐺𝑜𝑎𝑙 from multiplexer
13 if goal = 𝑠𝑒𝑟𝑣𝑒𝑟𝐺𝑜𝑎𝑙 then
14 recalculate occupancy grid
15 recalculate path

16 convert path
17 while 𝑔𝑜𝑎𝑙 not reached do
18 move robot to next way point

4.3.4 Control Module

Figure 4.10 illustrates the base common control sequence used in the forward,

backward, and rotational movements available in the 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑀𝑜𝑑𝑢𝑙𝑒, which is

based on the Velocity Controller subsystem as proposed as a part of the motion

planner [9]. We have improved the controlling capability and have extended the

control interface to ROSBot 2.0 robot model in addition to the Turtlebot robot

model. Like the Velocity controller, 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑀𝑜𝑑𝑢𝑙𝑒 also offers three basic move-

ments, Forward, Backward, and Rotation. Figure 4.10 illustrates the Planning

module operation when the robot operates as a single robot system.

We have replaced the odometry-based position tracking with position tracking

using both odometry and transformation data from 𝑆𝐿𝐴𝑀 𝑆𝑦𝑠𝑡𝑒𝑚, illustrated

in Figure 4.11. Since the transformation data from 𝑆𝐿𝐴𝑀 𝑆𝑦𝑠𝑡𝑒𝑚 has a low fre-

quency compared to odometry, whenever the transformation data is available, we

use it to calculate the difference between correct position and odometry whenever
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Figure 4.10: Common control sequence offered by control module as a single robot
system

the transformation data is available. Until the following transformation data is

made available by the 𝑆𝐿𝐴𝑀 𝑆𝑦𝑠𝑡𝑒𝑚, we use the calculated difference to derive

subsequent positions. Algorithm 6 contains the explained process. Though the

positions are not highly accurate compared to only using transformation data,

this approach enables a high frequency similar to odometry with reduced error.

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑀𝑜𝑑𝑢𝑙𝑒 transmits this improved position data to all other modules.

Figure 4.11: Position tracking system

In addition to the above modifications, we have extended the 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑀𝑜𝑑𝑢𝑙𝑒

to allow it to be used in robot system instances in multi-robot systems. The new

functionality allows the 𝐶𝑙𝑖𝑒𝑛𝑡 𝑀𝑜𝑑𝑢𝑙𝑒 to resize the area’s boundaries consid-

ered for robot movement. The goal assigned from the server can be accepted

even if it exists outside the region specified at the start for each robot instance

because the ability to update the boundaries allows the robot system instance
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Algorithm 6: Position Tracking with SLAM and odometry
Input: Transformation from SLAM System, Odometry
Output: Corrected position data

1 ∆𝑥,∆𝑦,∆𝑧,∆𝑟𝑜𝑙𝑙,∆𝑝𝑖𝑡𝑐ℎ,∆𝑦𝑎𝑤,← 0
2 while 𝑇𝑟𝑢𝑒 do
3 if SLAM transformation is available then
4 ∆𝑥 ← 𝑥𝑆𝐿𝐴𝑀 − 𝑥𝑜𝑑𝑜𝑚𝑒𝑡𝑟𝑦

5 ∆𝑦 ← 𝑦𝑆𝐿𝐴𝑀 − 𝑦𝑜𝑑𝑜𝑚𝑒𝑡𝑟𝑦

6 ∆𝑧 ← 𝑧𝑆𝐿𝐴𝑀 − 𝑧𝑜𝑑𝑜𝑚𝑒𝑡𝑟𝑦

7 ∆𝑟𝑜𝑙𝑙 ← 𝑟𝑜𝑙𝑙𝑆𝐿𝐴𝑀 − 𝑟𝑜𝑙𝑙𝑜𝑑𝑜𝑚𝑒𝑡𝑟𝑦

8 ∆𝑝𝑖𝑡𝑐ℎ ← 𝑝𝑖𝑡𝑐ℎ𝑆𝐿𝐴𝑀 − 𝑝𝑖𝑡𝑐ℎ𝑜𝑑𝑜𝑚𝑒𝑡𝑟𝑦

9 ∆𝑦𝑎𝑤 ← 𝑦𝑎𝑤𝑆𝐿𝐴𝑀 − 𝑦𝑎𝑤𝑜𝑑𝑜𝑚𝑒𝑡𝑟𝑦

10 𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ← 𝑥𝑜𝑑𝑜𝑚𝑒𝑡𝑟𝑦 + ∆𝑥

11 𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ← 𝑦𝑜𝑑𝑜𝑚𝑒𝑡𝑟𝑦 + ∆𝑦

12 𝑧𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ← 𝑧𝑜𝑑𝑜𝑚𝑒𝑡𝑟𝑦 + ∆𝑧

13 𝑟𝑜𝑙𝑙𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ← 𝑟𝑜𝑙𝑙𝑜𝑑𝑜𝑚𝑒𝑡𝑟𝑦 + ∆𝑟𝑜𝑙𝑙

14 𝑝𝑖𝑡𝑐ℎ𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ← 𝑝𝑖𝑡𝑐ℎ𝑜𝑑𝑜𝑚𝑒𝑡𝑟𝑦 + ∆𝑝𝑖𝑡𝑐ℎ

15 𝑦𝑎𝑤𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ← 𝑦𝑎𝑤𝑜𝑑𝑜𝑚𝑒𝑡𝑟𝑦 + ∆𝑦𝑎𝑤

16 return 𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑧𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑟𝑜𝑙𝑙𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑝𝑖𝑡𝑐ℎ𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑦𝑎𝑤𝑐𝑜𝑟𝑟𝑒𝑐𝑡

to track and reach a position outside the existing boundaries. Figure 4.12 illus-

trates the resultant system architecture of the 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑀𝑜𝑑𝑢𝑙𝑒 after adding new

functionality.

Figure 4.12: Common control sequence offered by control module as a multi-robot
system
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4.3.5 Client Module

This module is used when the robot system operates as part of the multi-robot

system and not as a single robot system. The module is designed to connect with

the 𝑆𝑒𝑟𝑣𝑒𝑟 𝑆𝑦𝑠𝑡𝑒𝑚 in order to transmit data back and forth between server and

robot system. Figure 4.13 illustrates the intended server and robot connectivity

through the 𝐶𝑙𝑖𝑒𝑛𝑡 𝑀𝑜𝑑𝑢𝑙𝑒.

As illustrated in Figure 4.14, 𝐶𝑙𝑖𝑒𝑛𝑡 𝑀𝑜𝑑𝑢𝑙𝑒 collects data such as robot name,

initial position, and orientation from the configuration file, point cloud generated

by the 𝑆𝐿𝐴𝑀 𝑆𝑦𝑠𝑡𝑒𝑚 and position data from the 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑀𝑜𝑑𝑢𝑙𝑒 and transmits

them to the single input port in the server to be used for calculations.

It also listens to the transmissions from the server and receives exploration

goals from which it selects the appropriate goal using the host robot’s name.

Then it uses the goal to calculate new area boundaries as shown in Figure 4.15

such that new boundaries encompass the new goal. This allows the other modules

to perform calculations without failure. Then it updates other modules with the

new goal assigned by the server and new area boundaries calculated based on the

goal. When the 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑀𝑜𝑑𝑢𝑙𝑒 notifies it about unreachable goals assigned

by the server, 𝐶𝑙𝑖𝑒𝑛𝑡 𝑀𝑜𝑑𝑢𝑙𝑒 transmits the unreachable goals back to the server

so that they would be excluded in future calculations.

Figure 4.13: Connectivity between the server system and client modules
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Figure 4.14: Data collection by client module to be sent to the server system

Figure 4.15: Data received by the client module is used to update other modules
.
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Chapter 5

EXPERIMENTS AND RESULTS

In this section, we explain the experiments we performed to evaluate our sys-

tem. First, we present the performance evaluation criteria we designed to assess

exploration systems, and then we present the single robot experiments we per-

formed and the collected results. Then we present the multi-robot experiments

we performed, including two robot systems and three robot systems on the same

simulation environment. Then we present the results we collected during exper-

iments related to two robot and three robot systems and compares them with

one robot experiment results collected from the same simulation environment to

identify performance gains and losses the multi-robot systems have over one robot

system.

5.1 Performance Evaluation Criteria

Due to the lack of proper evaluation criteria for evaluating the performance of

exploration systems statistically, we formulated the criteria based on the perfor-

mance evaluation of pure-motion tasks [42] on the basis that a single exploration

task could be considered as a collection of pure motion tasks and map evaluation

tasks.

A map evaluation task is only related to exploration, and it can either be a

task related to processing on the onboard computer or be a simple movement

that enables the robot to extend or improve the map. A pure motion task, as

described in [42], is only concerned with moving from one place to another.

The proposed performance evaluation criteria contain five components: Time

to explore, Exploration path length, Lateral Stress, Tangential Stress, and Ex-

plored Percentage. We have explained each of the components in detail in the

following sub-sections.
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5.1.1 Time to Explore

As mentioned earlier, we consider an exploration task to consist of pure motion

tasks and map evaluation tasks, and Time to reach the goal measure [42] focuses

only on measuring the robot’s operating time to complete the pure motion tasks.

Hence, we propose a new measure named Time to explore to measure the total

time the robot spends on pure motion and map evaluation tasks instead of Time

to reach the goal measure.

For single robot systems, we calculate Time to explore as the time it takes for

the robot to complete the exploration task. For multi-robot systems, we calculate

Time to explore as the time it takes for all the robots in the system to complete

the exploration task while coordinating with each other.

When considering this measure, exploration systems with a low Time to ex-

plore value perform better. This measure is important when the robot is required

to explore in a time-critical situation (e.g., disaster zone) or with a limited power

supply (e.g., battery or fuel).

5.1.2 Exploration Path Length

Path length measure [42] focuses on measuring the distance the robot travels

to complete a pure motion task. Depending on the design of the exploration

system, the Map evaluation task may or may not include movements intended

for extending for the map. In order to accommodate the movement during map

evaluation tasks, we define a new distance measure, Exploration Path Length as

the distance the robot travels during an exploration task. This measure contains

the distance traveled during both pure motion tasks and map exploration tasks.

For single robot systems, we calculate Exploration Path Length directly as the

distance the robot travels during an exploration task. For multi-robot systems, we

calculate Exploration Path Length on the system level as an accumulated value

and an average distance value a robot traveled to complete the exploration task

while coordinating with other robots.

This measure is also important when the robot operates with a limited power
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supply. When considering this measure, exploration systems with a low Total

Path Length value perform better. When considering multi-robot systems, having

a low Total Path Length standard deviation indicates having a better coordination

strategy because that means all robots have traveled nearly similar distances.

5.1.3 Lateral Stress

The stability of a robot depends on the forces acting upon its body. The forces

in the lateral direction to the direction of travel is a primary factor that decides

the robot’s stability. When the centrifugal force acting on the robot is low,

the robot becomes stable. The third measure, Lateral Stress [42], is used as

proposed. Lateral Stress indicates the stress on the robot in the lateral direction

to the direction of travel. The Lateral Stress can be calculated by integrating

the centrifugal forces along the trajectory. If the instantaneous linear speed is

v(t) and instantaneous angular speed is w(t), considering a unit mass, the Lateral

Stress (LS) can be calculated as in equation 5.1.

𝐿𝑆 =

∫︁ 𝑡𝐹

0

v(t) · w(t) 𝑑𝑥 (5.1)

For single robot systems, we calculate Lateral Stress as the stress on the

robot in the lateral direction to the travel direction during an exploration task.

For multi-robot systems, we calculate Lateral Stress on the system level as an

accumulated value and as an average value on a robot in the lateral direction to

travel direction during an exploration task while coordinating with other robots.

If an exploration system has a lower Lateral Stress value, the robot has higher

stability. When considering multi-robot systems, having a low Lateral Stress

standard deviation indicates having a better coordination strategy because that

means all robots have traveled on smooth and equally long trajectories.

5.1.4 Tangential Stress

The forces acting on the robot along the direction of travel are the other main

factor that decides the robot’s stability and power consumption. The fourth
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measure, Tangential Stress, [42] is used as proposed. It measures the stress caused

by the inertial forces acting on the robot in the direction of travel. The inertial

forces on the robot are caused by acceleration and deceleration that occurs due to

variations in trajectory. The Tangential Stress can be calculated by integrating

the inertial forces along the trajectory. If the instantaneous linear acceleration is

a(t), considering a unit mass, the Tangential Stress (TS) can be calculated as in

the equation 5.2.

𝑇𝑆 =

∫︁ 𝑡𝐹

0

|a(t)| 𝑑𝑥 (5.2)

We calculate Tangential Stress directly as the stress on the robot in the direc-

tion of travel during an exploration task for single robot systems. For multi-robot

systems, we calculate Tangential Stress on the system level as an accumulated

value and average stress on a robot in the direction of travel during an exploration

task while coordinating with other robots.

If an exploration system has a lower Tangential Stress value, the robot has

higher stability. When considering multi-robot systems, having a low Tangential

Stress standard deviation indicates having a better coordination strategy because

that means all robots have traveled on smooth and equally long trajectories.

5.1.5 Explored Percentage

The last measure, Explored Percentage, indicates the completeness of the au-

tonomous exploration task compared to a manually controlled exploration using

the same robot and same sensors. Explored Percentage is calculated as the ra-

tio between the Explored volume and the Explorable volume. Explored volume

refers to the volume of space the exploration system managed to explore during

an autonomous exploration task, and Explorable volume refers to the volume of

space that can be discovered by navigating the robot manually. If the Explored

volume is v and the Explorable volume is V, the Explored Percentage (EP) can

be calculated as in the equation 5.3
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𝐸𝑃 =
v*100

V
(5.3)

For single robot systems, we calculate Explored Percentage directly on the

robot. For multi-robot systems, we calculate Explored Percentage on the server

system as it allows us to measure the Explored Percentage value without being af-

fected by changing dimensions due to server goal updates. When considering this

measure, exploration systems with a higher Explored Percentage value perform

better.

5.2 Single Robot Experiments and Results

5.2.1 Explore-Lite System

Explore-Lite [27] implements greedy frontier-based exploration and is readily

available as a ROS package. This system has been used as a system that imple-

ments frontier-based exploration [22] by many experiments that include testing

reward functions for reinforcement learning-based SLAM systems [43], creating

generative models for switching between SLAM map and CAD maps [44], map

merging in robot swarms [45].

In addition to the experiments, one team of the 2021 RoboCup Rescue Sim-

ulation Virtual Robot Competition has proposed using Explore-Lite to rescue

victims in disaster areas [46]. It has also been used by the ATR Kent team from

Kent State University, USA, for RoboCup Rescue 2019 TDP Virtual Robot Simu-

lation competition for rescuing victims from disaster areas using a heterogeneous

multi-robot system [47] that includes ground robots and drones.

We compare the performance of our single robot system against the Explore-

Lite system to understand the capabilities of our system.

5.2.2 Experimental Setup

We conducted experiments using ROS and Gazebo physics simulator on a com-

puter with a 4th generation Intel i7 processor with 2.60 GHz base clock speed
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and 16 GB RAM. We used a simulated model of a Turtlebot with a mounted

Microsoft Kinect with an active sensing range of 3 meters to evaluate the single

robot system. Figure 5.1 illustrates the simulation environment, consisting of

basic objects such as cubes, spheres, and cylinders in a 6 meter x 6 meter square

area. We evaluated the center 5 meter x 5 meter area with up to a 0.5 meter

height from the ground. All basic objects present in the evaluation space accounts

for about 1.6 square meters or 13% of the evaluation space.

Figure 5.1: The simulated environment used for a single robot experiment

Figure 5.2 shows several instances of a single robot exploration experiment.

Figure 5.2a shows the beginning of the exploration and Figure 5.2f shows the

completion of exploration.

5.2.3 Experiment

We implemented 𝑃𝑙𝑎𝑛𝑛𝑒𝑟 𝑀𝑜𝑑𝑢𝑙𝑒, 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑢𝑙𝑒, and 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑀𝑜𝑑𝑢𝑙𝑒

proposed in this research as separate ROS packages that can be configured and
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Single robot exploration during an experiment

launch via a master ROS package. For the experiments, we use Gazebo Physics

Simulator-based simulations. Data required for the performance evaluation, such

as octomap, position, velocity, and acceleration, were gathered from sensors on

the Turtlebot robot through 7 experiments.

We used the Explore-Lite system [27] combined with ROS navigation stack

as the comparison system against which we compared our performance. For
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the experiments, we again used Gazebo Physics Simulator-based simulations.

Data required for the performance evaluation, such as octomap, position, velocity,

and acceleration, were gathered from sensors on the Turtlebot robot through 7

experiments.

We used a manually teleoperated robot in the same simulation environment

to identify the maximum area that could be mapped. Octomap data required

for area calculation was gathered from sensors available on the Turtlebot robot

through 3 experiments.

We have summarized the results of the experiments in the form of Mean and

Standard Deviation in Table 5.1. Time to explore, Total Path Length, Lateral

Stress, Tangential Stress values have been calculated from the results of the ex-

periments, while the Explored Percentage was calculated using the results from

the experiments and results from the manual operation of the robot.

Table 5.1: Single robot system evaluation results

Measure Explore-Lite Single robot
(unit) Mean SD Mean SD

Explored Percentage 94.28 1.82 94.49 0.94
Time to explore (s) 1377.39 414.60 855.02 51.03
Total Path Length (m) 10.27 2.44 6.45 0.43
Lateral Stress (Ns) 2.54 0.51 0.06 0.01
Tangential Stress (Ns) 394.51 153.27 96.04 6.69

5.2.4 Result Analysis

All the results we collected in these experiments are dependant on the simulation

environment variables such as sensor range, the physical size of the region, the

density of static obstacles. Our selected physical size of the area is 1.67 times

the range of the sensor. According to the results in Table 5.1, both systems have

almost similar Explored Percentage mean values. Respective low standard devi-

ation values mean that the variation of Explored Percentage values in individual

experiments is low. These facts indicate that the ability to explore is similar in

both systems.

59



Hence other factors such as efficiency and stability need to be considered

when evaluating the systems. Total Path Length, Lateral Stress, and Lateral

Stress measures help evaluate the robot’s efficiency and stability. The Explore-

Lite system has higher mean values for both Lateral Stress and Tangential Stress

than the proposed single robot system, which means the proposed system is

more efficient and stable. The respective higher standard deviation shows that

even under the same environmental conditions, the Explore-Lite system tends

to navigate inconsistently compared to the proposed system when efficiency and

stability are concerned. Total Path Length value mirrors the efficiency of the

system in terms of travel distance. Explore-Lite system has traveled more distance

than the proposed systems, which means that the proposed system is capable of

more efficient exploration.

Time to explore value shows the time a system takes to explore the map.

Explore-Lite system has a high Time to explore mean value and a considerably

sizeable standard deviation that shows that experiments had varying completion

times. The proposed system has a low Time to explore mean and a standard

deviation compared to the Explore-Lite system, which shows that it is faster

and had an almost similar exploration throughout experiments compared to the

Explore-Lite system.

Figures 5.3 & 5.4 contain comparisons between the Explore-Lite and proposed

systems using Explored Percentage and Time to explore values.

Figure 5.3 shows the experiments with the fastest explorations of both sys-

tems. The proposed system managed to complete the exploration with an Ex-

plored Percentage of 94% in 783 seconds, and the Explore-Lite system has man-

aged to complete the exploration with an Explored Percentage of 91% in 828 sec-

onds. After about 500 seconds from the start, the proposed system has achieved

an Explored Percentage of about 88%, and Explore-Lite has achieved about 78%.

Figure 5.4 shows the experiments with the highest Explored Percentage of

both systems. The proposed system managed to complete the exploration with

an Explored Percentage of 95% in 929 seconds, and the Explore-Lite system has

managed to complete the exploration with an Explored Percentage of 97% in 2154
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Figure 5.3: Comparison of fastest explorations of the single robot system and
Explore-Lite system

seconds. After about 930 seconds from the start (when the proposed systems com-

pleted exploration), the Explore-Lite system has achieved an Explored Percentage

of about 77%, and after about 1900 seconds from the start is has achieved an Ex-

plored Percentage of about 95% (highest Explored Percentage proposed system

managed to achieve).

5.3 Multi-Robot Experiments and Results

5.3.1 Experiment Setup

We conducted experiments using ROS and Gazebo physics simulator on a com-

puter with an 8th generation Intel i7 processor with 3.20 GHz base clock speed

and 64 GB RAM. Simulated models of Turtlebot, each with a mounted Microsoft

Kinect with an active sensor range of 3 meters, were used for evaluations of the
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Figure 5.4: Comparison of explorations with highest Explored Percentage of the
single robot system and Explore-Lite system

multi-robot system. There were three experiments, one robot experiment, two

robot experiments, and three robot experiments where all three experiments used

the same environment. One robot experiment was conducted as a controlled ex-

periment without the server system, which enabled us to compare the two robot

and three robot systems against it to calculate the performance gain. The simula-

tion environment was a 10 meter x 10 meter square area. We evaluated the whole

10 meter x 10 meter area with up to a 0.5 meter height from the ground. The

evaluation space was sparsely populated with static obstacles while the robots in

the two robots and three robots experiments acted as dynamic obstacles to the

other robots present in each experiment.
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5.3.2 One Robot Experiment

We used ROS packages containing 𝑃𝑙𝑎𝑛𝑛𝑒𝑟 𝑀𝑜𝑑𝑢𝑙𝑒, 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑢𝑙𝑒 and

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑀𝑜𝑑𝑢𝑙𝑒 along with the master ROS package used for configuration and

launching the system. For this experiment, we use Gazebo Physics Simulator-

based simulations. The simulation setup is available in Figure 5.5. Data required

for the performance evaluation, such as octomap, position, velocity, and acceler-

ation, were gathered from the Turtlebot robot’s sensors through 5 experiments.

Figure 5.5: The simulated environment used for one robot experiment

We used a manually teleoperated robot in the same simulation environment

to identify the maximum area that can be mapped. Octomap data required for

the area calculation was gathered from sensors on the Turtlebot robot through 3

experiments. The Explored Percentage was calculated using the results from the

experiment and the manual operation of the robot.
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5.3.3 Two Robot Experiment

𝑆𝑒𝑟𝑣𝑒𝑟 𝑠𝑦𝑠𝑡𝑒𝑚 and 𝐶𝑙𝑖𝑒𝑛𝑡 𝑀𝑜𝑑𝑢𝑙𝑒 proposed in this research for multi-robot

coordination has been implemented as a ROS package for 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛. ROS

packages containing 𝑃𝑙𝑎𝑛𝑛𝑒𝑟 𝑀𝑜𝑑𝑢𝑙𝑒, 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑢𝑙𝑒 and 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑀𝑜𝑑𝑢𝑙𝑒

along with 𝐶𝑙𝑖𝑒𝑛𝑡 𝑀𝑜𝑑𝑢𝑙𝑒 ROS node from 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ROS package were

used along with the master ROS package for configuration and launching two

instances of the Robot system. 𝑆𝑒𝑟𝑣𝑒𝑟 𝑆𝑦𝑠𝑡𝑒𝑚 ROS node from 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛

ROS package was used along with the master ROS package for configuration

and launching the Server system. For this experiment, we use Gazebo Physics

Simulator-based simulations. The simulation setup is available in Figure 5.6.

Data required for the performance evaluation, such as octomap, position, velocity,

and acceleration, were gathered from sensors available on the Turtlebot robot

through 5 experiments.

Figure 5.6: The simulated environment used for two robot experiment

Figure 5.7 shows several instances of a two robot exploration experiment.

Figure 5.7a shows the beginning of the exploration and Figure 5.7f shows the
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completion of exploration.

(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Two robot exploration during an experiment

In the shown experiment, we observed an empty area in the middle of the

octomap that has been highlighted in a red rectangle in Figure 5.7f. Though the

floor has not been identified, the octomap evaluation showed that the area above

the floor is free space. This did not occur in all the experiments.
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5.3.4 Three Robot Experiment

ROS packages containing 𝑃𝑙𝑎𝑛𝑛𝑒𝑟 𝑀𝑜𝑑𝑢𝑙𝑒, 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑢𝑙𝑒 and 𝐶𝑜𝑛𝑡𝑟𝑜𝑙

𝑀𝑜𝑑𝑢𝑙𝑒 along with 𝐶𝑙𝑖𝑒𝑛𝑡 𝑀𝑜𝑑𝑢𝑙𝑒 ROS node from 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ROS package

were used along with the master ROS package for configuration and launching

three instances of the robot system. 𝑆𝑒𝑟𝑣𝑒𝑟 𝑠𝑦𝑠𝑡𝑒𝑚 ROS node from 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛

ROS package was used along with the master ROS package for configuration

and launching the Server system. For this experiment, we use Gazebo Physics

Simulator-based simulations. The simulation setup is available in Figure 5.8.

Data required for the performance evaluation, such as octomap, position, velocity,

and acceleration, were gathered from sensors available on the Turtlebot robot

through 5 experiments.

Figure 5.8: The simulated environment used for three robot experiment

Figure 5.9 shows several instances of a three robot exploration experiment.

Figure 5.9a shows the beginning of the exploration and Figure 5.9f shows the

completion of exploration.

Results of the experiments have been summarized in the form of Mean and
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(c) (d)

(e) (f)

Figure 5.9: Three robot exploration during an experiment

Standard Deviation in Table 5.2 and Table 5.3.

Explored Percentage and Time to explore needs to be measured and evalu-

ated on the system level since they contain aspects that relate to coordination

and cannot be measured from individual robots when considering two robot and

three robot systems. The Table 5.2 contains comparisons on system-level where

Explored Percentage, Time to explore has been calculated at the robot level in
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Table 5.2: Multi robot system - system level evaluation results

Measure One Robot Two robots Three robots
(unit) Mean SD Mean SD Mean SD

Explored Percentage 98.21 1.70 96.92 2.71 99.17 0.24
Time to explore (s) 1294.84 169.46 672.62 72.49 807.66 91.26
Total Path Length (m) 40.29 4.80 29.97 3.72 36.60 4.49
Lateral Stress (Ns) 0.29 0.03 0.44 0.19 0.82 0.63
Tangential Stress (Ns) 250.39 81.21 209.91 65.30 326.63 70.89

one robot system and server level in two and three robot systems. Total Path

Length, Lateral Stress, and Tangential Stress in Table 5.2 are collected from each

robot and represented as an accumulated value in system-level comparisons.

Table 5.3: Multi robot system - robot level evaluation results

Measure One Robot Two robots Three robots
(unit) Mean SD Mean SD Mean SD

Total Path Length (m) 40.29 4.80 14.98 1.86 12.20 1.50
Lateral Stress (Ns) 0.29 0.03 0.22 0.09 0.27 0.21
Tangential Stress (Ns) 250.39 81.20 104.95 32.65 108.88 23.63

Since Total Path Length, Lateral Stress, Tangential Stress values are calculated

from robot level, there are variations between values gathered from the robots in

the same system. Because of that reason, we cannot make further claims on these

using system-level comparisons of Total Path Length, Lateral Stress, Tangential

Stress values. Therefore we have presented robot level values for these measures

in Table 5.3. We have not included Explored Percentage and Time to explore

values in Table 5.3 because those values are calculated only from the system

level and cannot be related to robot level performance. The values presented

in Table 5.3 are mean and standard deviation values calculated using averaged

values based on the number of robots in each experiment.

5.3.5 Results Analysis

All the results we collected in these experiments are dependant on the simulation

environment variables such as sensor range, the physical size of the region, the

density of static obstacles, and availability of dynamic obstacles. Our selected
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physical size of the area is 3.34 times the range of the sensor. According to

the results in the Table 5.2, three robot systems got the highest Explored Per-

centage mean and the lowest standard deviation values of all experiments. Two

robot systems got the least mean and highest standard deviation among the ex-

periments. Considering that all systems had Explored Percentage mean values,

which are about 1% apart, we can conclude that all three systems perform well

when considering the exploration aspect.

Time to explore value shows the time a system takes to explore the map.

one robot system has a high Time to explore the mean value and a considerably

sizeable standard deviation compared to the other two systems. One robot system

has, on average, completed the explorations at about 1295 seconds. Two robot

systems have taken 673 seconds approximately, which means it is 48% faster than

the one robot system. Three robot systems have taken 808 seconds approximately,

which means it is 38% faster than the one robot system. The three robot system

was 20% slower than the two robot system.

Total Path Length value mirrors the efficiency of the system in terms of travel

distance. One robot system has moved the most distance compared to multi-

systems amounting to a mean value of 40.29 meters. Robots of the two robot

system have collectively moved about 30 meters which is about 25% less than

one robot system. When considering robot level performance, a robot from two

robot system has on average moved about 14.98 meters which is approximately

a 63% reduction compared to one robot system. Similarly, robots of the three

robot system have collectively moved about 36.6 meters which is about 10% less

than one robot system. A robot from three robot system has, on average, moved

about 12.20 meters which is approximately a 70% reduction compared to one

robot system. Even though the robots of the three robot system has collectively

traveled 22% more than the robots of the two robot system, a robot from the

three robot system has moved approximately 19% less than a robot from the two

robot system.

On the system level, three robot system has the highest Lateral Stress and

Tangential Stress values of all systems. However, a more meaningful robot level
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comparison on Table 5.3 shows that One robot system has the highest value

for both Lateral Stress and Tangential Stress compared to other systems, which

means exploring the area alone causes the robot to operate under higher stress

than multi-robot systems. A robot in two robot system experiences 25% less

lateral stress and 58% less tangential stress than the robot that operates alone.

A robot in three robot system experiences 7% less lateral stress and 57% less

tangential stress than the robot that operates individually. A robot from three

robot systems experiences 24% more lateral stress and 4% more tangential stress

than a robot that belongs to two robot system.

Figure 5.10 shows the experiments with the fastest explorations of all systems.

One Robot system has completed the exploration with an Explored Percentage of

95% in 1026 seconds. Two Robot system has completed the exploration with an

Explored Percentage of 96% in 577 seconds. Three Robot system has completed

the exploration with an Explored Percentage of 99% in 715 seconds. After about

580 seconds from the start, when the two robot system completes the exploration,

one robot system has achieved an Explored Percentage of about 66%, and three

robot system has achieved about 90%.

Figure 5.11 shows the experiments with the highest Explored Percentage of all

systems. one robot system completed the exploration with an Explored Percentage

of 99% in 1495 seconds. Two robot system also completed the exploration with

an Explored Percentage of 99% in 690 seconds. Three Robot system completed

the exploration with an Explored Percentage of 99% in 973 seconds. After about

690 seconds from the start, when the two robot system completed exploration,

one robot system achieved an Explored Percentage of about 80%, and three robot

system achieved an Explored Percentage of about 82%.

5.4 Discussion

Comparisons in Table 5.1, Figure 5.3, Figure 5.4 prove that the proposed single

robot system is faster, more stable, and more efficient than the Explore-Lite

system [27] available as a greedy frontier-based exploration system.
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Figure 5.10: Comparison of fastest explorations of one robot system, two robot
system, and three robot system

Results analysis and data in Table 5.2, Table 5.3, Figure ,5.10 and Figure 5.11

prove that multi-robot systems are faster, more stable, and more efficient than

one robot system during simulations. Reducing trends in values such as Total

Path Length and Time to explore proves that our proposed multi-robot system

design is effective and successful.

When considering system-level and robot levels comparisons between two

robot and three robot systems, even though both perform better than one robot

system, we can see a performance decrease in the three robot system compared to

the two robot system. This performance decrease can either be due to a resource

limit in the computer used for simulations as shown in Figure 5.12 or due to two

robot system being more effective against the selected environment type and size

than three robot system.

Figure 5.12 contains three screen captures taken during each system simula-
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Figure 5.11: Comparison of explorations with highest Explored Percentage of one
robot system, two robot system, and three robot system

tion, and it shows resource utilization by ROS and Gazebo simulator during each

simulation. Compared to one robot system utilization in Figure 5.12a, two and

three robot systems utilize much more resources, as illustrated in Figure 5.12b

and Figure 5.12c. Comparison between two and three robot systems reveals that

three robot system might lack the resources it needs to perform at total capac-

ity. Such lack of resources can prolong the exploration calculations and cause

inconsistent coordination of 3 robots, reducing the Total Path Length improve-

ment and increasing Lateral Stress and Tangential Stress on robots and Time to

explore value of the system.

The reason two robot system being effective than three robot system can be

supported by the fact that our simulated environment having a physical area

size to sensor range ratio of 3.34 : 1, which means that the whole area can be

covered with two robots due to the rotational action available in our system with
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(a)

(b)

(c)

Figure 5.12: Resource utilization of ROS and Gazebo simulator during (a) one
robot system simulations (b) two robot system simulations (c) three robot system
simulations at mid-way.
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a minimum overlap of maps. When using three robots, the overlap of maps can

become larger and overlapping exploration under local explore module (during

communication intervals) can cause the extended time making three robot system

less effective.

Another identified issue was the faulty calculations on the cluster evaluation

stage of the 𝑆𝑒𝑟𝑣𝑒𝑟 𝑠𝑦𝑠𝑡𝑒𝑚 due to failures of individual 𝑆𝐿𝐴𝑀 𝑆𝑦𝑠𝑡𝑒𝑚𝑠. These

failures of the SLAM system could either be due to internal pose-graph calcula-

tion failures or inefficient parameter tuning. The failed SLAM systems returned

distorted point clouds, which were transmitted to 𝑆𝑒𝑟𝑣𝑒𝑟 𝑆𝑦𝑠𝑡𝑒𝑚 and were used

for map merging and cluster calculation, causing the calculations to be faulty.

The Figure 5.13is one such instance where the far left corner of the map has

failed to align correctly.

Figure 5.13: SLAM system failure

As mentioned, in the current implementation, we use 𝑅𝑇𝐴𝐵 −𝑀𝑎𝑝 as the

SLAM system and use the in-built octomap server to calculate the octomap used

by the 𝑃𝑙𝑎𝑛𝑛𝑒𝑟 𝑀𝑜𝑑𝑢𝑙𝑒 and the 𝐸𝑥𝑝𝑙𝑜𝑟𝑒 𝑀𝑜𝑑𝑢𝑙𝑒. The SLAM system only adds

point clouds to the existing map and does not allow for the removal of point
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clouds or portions of point clouds over time. Since the octomap is calculated

from the point cloud map from the SLAM system, the octomap loses its quality

of probabilistic updatability. If the octomap is calculated directly from the camera

sensor data instead, it allows for probabilistic updatability when new sensor data

of the same region become available over time.

In the current implementation, when a dynamic obstacle appears in one

robot’s active sensor region or appears in the area already mapped but gets

scanned by the robot during movement, it gets registered in the point cloud and

gets included in the octomap. When a dynamic obstacle leaves a robot’s active

sensor region or leaves an already mapped area scanned afterward, it does not get

removed from the point cloud map since it does not support point cloud removal.

Since the octomap has lost its quality of probabilistic updatability, the obstacle

does not get removed from the octomap either.

The other issue we identified in our system, the inability to separately dis-

tinguish dynamic obstacles, can be explained using the explanation mentioned

earlier. The Figure 5.14illustrates several instances where one robot has entered

or moved out of another robot’s active sensor region. Those dynamic obstacles

have been registered on the point cloud map as obstacles more significant than

the original obstacle due to movement and appear similarly on the octomap.
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(a)

(b)

Figure 5.14: Dynamic objects that were visualized as obstacles (a) in point cloud
(b) in octomap
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Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

In this research, we presented a two-stage octomap based exploration and navi-

gation system for unknown environments. We used octomaps to model the world

and then to evaluate the unexplored region and calculate navigation paths. We

proposed a system that can function as either a single robot exploration system or

a multi-robot exploration system depending on the size of the area to be covered

and the speed required.

We evaluated our single robot system instance comparatively with the Explore-

Lite system using simulations. The results show that our proposed system can

explore 38% faster than the Explore-Lite system while achieving the same cover-

age of the area.

Comparison between one robot, two robots, and three robot systems show

that our proposed multi-robot system is effective and successful. A Multi-robot

system using two robots is 48% faster than the individual robot system, and a

multi-robot system using three robots is 38% faster than the individual robot

system. However, we cannot make any other quantitative claims, such as the

most effective number of robots for the selected environment, due to various

issues, such as lack of computational resources and optimization.

In the future, all the modules including the 𝑆𝑒𝑟𝑣𝑒𝑟 𝑆𝑦𝑠𝑡𝑒𝑚 need to be im-

proved and optimized using parallelization and memory optimization approaches.

This would allow the system to be used on computers with less computational

resources and has the potential to increase the speed as well. In addition to that,

the system needs to be tested on the field on a real robot system. This requires

parameter tuning to suit the physical limitations of the robot, would also require

unit testing of each module and ultimately testing of the whole system.

Another future task would be the development of a SLAM system that utilizes

non-rigid deformation for loop closing would be helpful for feature-based initial
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position unknown map merging on the 𝑆𝑒𝑟𝑣𝑒𝑟 𝑆𝑦𝑠𝑡𝑒𝑚, eliminating the require-

ment for knowing the initial position of robots for map merging and coordination

in multi-robot systems. However, this can reduce the speed and effectiveness of

the exploration due to the long processing time and the significant overlap of the

map required for successful merging.

Separation of the mapping and octomap calculation functionalities at the

robot level would resolve the dynamic obstacle issue shown in Figure 5.14. 𝑆𝐿𝐴𝑀

𝑆𝑦𝑠𝑡𝑒𝑚 needs to be used to calculate the correct position of the robot and create

the map of the environment while a separate instance of the Octomap server needs

to be used to calculate the octomap environment based on the depth sensor data.

This separation would allow dynamic obstacles to be identified in the octomap

without getting identified as a stretched-out obstacle, as in Figure 5.14b.
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