

## Communication infrastructure in ROS

Session o2

Kalana Ratnayake 24/10/2020

## **Session Plan**



### Session 01

Robotics and ROS

- Introduction to basic concepts of Robotics
- Introduction to ROS
- When and How to use ROS in robotics



## Session o2

Communication infrastructure in ROS

- Getting started with ROS
- Publisher Subscriber (C++)
- Publisher Subscriber (Python)

## Session Plan (cont..)





## Session o3

Communication infrastructure in ROS (Part 2)

- Standard and Custom message, service and action definitions
- Client Server(C++)
- Client Server (Python)
- Action client Action server (C++)
- Action client Action server (Python)

## Session o4

Robot specific infrastructure of ROS

- Introduction to Robot Geometry library
- Introduction to Robot Description language
- Introduction to Gazebo

planned based on slides titled 240AR060 Master's degree in Automatic Control and Robotics – Introduction to ROS by Jan Rosell / Carlos Rosales

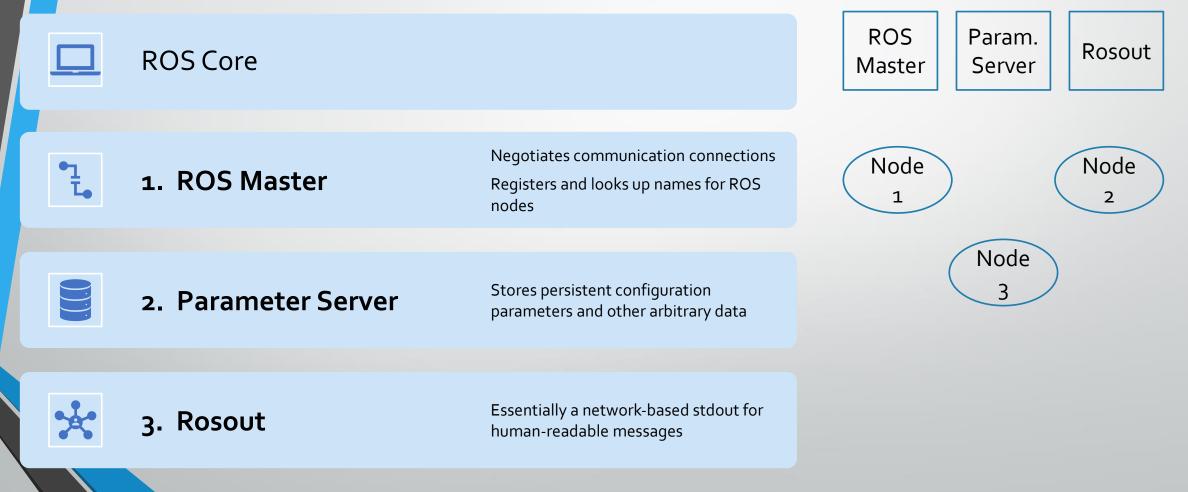
## Session Plan (cont..)



## Session o5

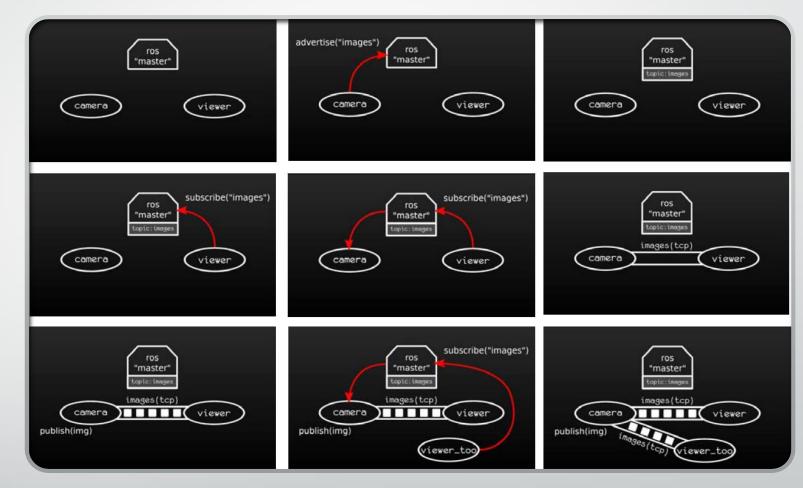
Development tools available in ROS

- rosrun, roslaunch
- rostopic, rosservice
- rqt\_graph
- rqt\_tf\_tree
- Catkin build system


planned based on slides titled 240AR060 Master's degree in Automatic Control and Robotics – Introduction to ROS by Jan Rosell / Carlos Rosales

# Communication infrastructure in ROS

Communication infrastructure of ROS mainly consist of


- **1.** ROS nodes
- **2.** ROS messages
- **3.** ROS core
- When there are many ROS nodes that communicate with each other using ROS messages it is called a ROS application.

- ROS nodes are independent processes that perform computations or connect with hardware devices.
- ROS messages are used for inter-process communication (Data packet)
- ROS core in the process that keeps track of live ROS nodes and the meta data of ROS messages those nodes accept.



#### Getting started with ROS

•Taken from the slides titled 240AR060 Master's degree in Automatic Control and Robotics – Introduction to ROS by Jan Rosell / Carlos Rosales



#### • Starting a Workspace

## Getting started with ROS

mkdir -p ~/catkin\_ws/src cd ~/catkin\_ws/ catkin build

Finally source devel/setup.bash

#### Creating a package

catkin\_create\_pkg <package\_name> [depend1] [depend2] [depend3]

# Getting started with ROS

Eg: catkin\_create\_pkg session2\_tutorials std\_msgs rospy roscpp

Std\_msg : basic ROS messages Rospy : **Python** client library for ROS. Client API ROSCPP : **C++** client library for ROS. Client API

# workspace\_folder/ src/ CMakeLists.txt package\_1/ CMakeLists.txt package.xml ... package\_n/ CMakeLists.txt

package.xml

- -- WORKSPACE
- -- SOURCE SPACE
- -- 'Toplevel' CMake file, provided by
- -- CMakeLists.txt file for package\_1
- -- Package manifest for package\_1
- -- CMakeLists.txt file for package\_n
  - -- Package manifest for package\_n

# Communication infrastructure in ROS

Publisher & Subscriber

#### Publisher & Subscriber

- Create a workspace for this workshop mkdir -p ~/ros\_workshop/src
   cd ~/ros\_workshop/
   catkin build
  - Finally source devel/setup.bash
- Create a package

catkin\_create\_pkg session2\_pubsub std\_msgs rospy roscpp

#### Publisher (C++)

- Create a file in -> session2\_pubsub/src as publisher.cpp
- Open the -> Session2/Pub-Sub/C++/publisher.txt
- And copy the content
- Change

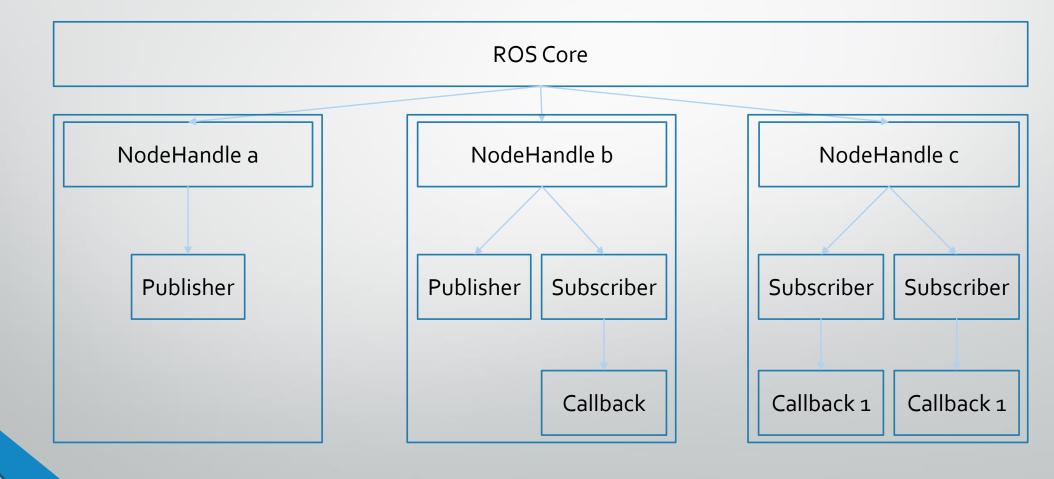
```
ros::init(argc, argv, "talker");
```

TO

ros::init(argc, argv, "publisher");

#### Subscriber (C++)

- Create a file in -> session2\_pubsub/src as subscriber.cpp
- Open the -> Session2/Pub-Sub/C++/subscriber.txt
- And copy the content


• Change

ros::init(argc, argv, "listener");

TO

ros::init(argc, argv, "subscriber");

## Structure of ROS nodes



Open session2\_pubsub/CMakeLists.txt:

### Building the nodes

add\_executable(publisher src/ publisher.cpp) target\_link\_libraries(publisher \${catkin\_LIBRARIES})

add\_executable(subscriber src/subscriber.cpp)
target\_link\_libraries(subscriber \${catkin\_LIBRARIES})

# Building the nodes

Go to root of the workspace
 cd ~/ros\_workshop/
 catkin build

• Open a terminal and run

#### roscore

Open a 2<sup>nd</sup> terminal in the workspace root and run source devel/setup.bash rosrun session2\_pubsub publisher

# Running the nodes

Open a 3<sup>rd</sup> terminal in the workspace root and run source devel/setup.bash rosrun session2\_pubsub subscriber

- Create a file in -> session2\_pubsub/scripts as publisher.py
- Open the -> Session2/Pub-Sub/python/publisher.txt
- And copy the content

Publisher (python) rospy.init\_node('talker', anonymous=True)

ТО

Change

rospy.init\_node('publisher', anonymous=True)

Open a terminal and Run

chmod +x publisher.py

Subscriber (python)

- Create a file in -> session2\_pubsub/scripts as subscriber.py
- Open the -> Session2/Pub-Sub/python/subscriber.txt
- And copy the content
  - Change rospy.init\_node('listener', anonymous=True) TO
    - rospy.init\_node(`publisher', anonymous=True)
- Open a terminal and Run chmod +x subscriber.py

• Open session2\_pubsub/CMakeLists.txt:

catkin\_install\_python(PROGRAMS scripts/subscriber.py scripts/publisher.py
DESTINATION \${CATKIN\_PACKAGE\_BIN\_DESTINATION}
the
nodes

• Go to root of the workspace

cd ~/ros\_workshop/

catkin build


• Open a terminal and run

#### roscore

Open a 2<sup>nd</sup> terminal in the workspace root and run source devel/setup.bash rosrun session2\_pubsub publisher.py

# Running the nodes

Open a 3<sup>rd</sup> terminal in the workspace root and run source devel/setup.bash rosrun session2\_pubsub subscriber.py

