
Communication
infrastructure in

ROS
Session 04

Kalana Ratnayake

7/11/2020

Session Plan

Session 01
Robotics and ROS

• Introduction to basic concepts of Robotics

• Introduction to ROS

• When and How to use ROS in robotics

Session 02
Communication infrastructure in ROS

• Getting started with ROS

• Publisher Subscriber (C++)

• Publisher Subscriber (Python)

Session Plan (cont..)

Session 03
Communication infrastructure in ROS (Part 2)

• Standard and Custom message, service and
action definitions

• Client Server(C++)

• Client Server (Python)

Session 04
Robot specific infrastructure of ROS

• Action client Action server (C++)

• Action client Action server (Python)

• Introduction to Gazebo

• Introduction to Robot Description language

• Introduction to Robot Geometry library

planned based on slides titled 240AR060 Master's degree in Automatic Control and Robotics – Introduction to ROS by Jan Rosell / Carlos Rosales

Session Plan (cont..)

Session 05
Development tools available in ROS

• rosrun, roslaunch

• rostopic, rosservice

• rqt_graph

• rqt_tf_tree

• Catkin build system

planned based on slides titled 240AR060 Master's degree in Automatic Control and Robotics – Introduction to ROS by Jan Rosell / Carlos Rosales

Communication infrastructure
in ROS

Action Server &
Action Client

ServerCode
Service
Client

resultreturn

goalSend
Goal

feedback

feedback

Action server
& Action Client

• Create a workspace for this workshop

cd ~/ros_workshop/

catkin build

• Finally

source devel/setup.bash

• Create a package

catkin_create_pkg session4_action std_msgs rospy
roscpp actionlib

Action server
& Action Client

• Create action folder inside session3_action

session4_action/action

• Create a custom.action inside

int32 order

int32[] sequence

int32[] sequence

• Modify CmakeLists.txt

Action Server
(C++)

• Create a file in -> session4_action/src as ac_server .cpp

• Open the -> Action/C++/ ac_server.txt

• And copy the content

Action Client
(C++)

• Create a file in -> session4_action/src as ac_client.cpp

• Open the -> Action/C++/ ac_client.txt

• And copy the content

Building the
nodes

• Open session4_action/CMakeLists.txt:

add_executable(ac_server src/ac_server.cpp)

target_link_libraries(ac_server ${catkin_LIBRARIES})

add_dependencies(ac_server ${session4_action_EXPORTED_TARGETS})

add_executable(ac_client src/ac_client.cpp)

target_link_libraries(ac_client ${catkin_LIBRARIES})

add_dependencies(ac_client ${session4_action_EXPORTED_TARGETS})

Building the
nodes

• Go to root of the workspace

cd ~/ros_workshop/

catkin build

Running the
nodes

• Open a terminal and run

roscore

• Open a 2nd terminal in the workspace root and run

source devel/setup.bash

rosrun session4_action ac_server

• Open a 3rd terminal in the workspace root and run

source devel/setup.bash

rosrun session4_action ac_client

Action Server
(python)

• Create a file in -> session4_action/scripts ac_server.py

• Open the -> Action/python/ac_server.txt

• And copy the content

• Open a terminal and Run

chmod +x ac_server.py

Action Client
(python)

• Create a file in -> session4_action/scripts ac_client.py

• Open the -> Action/python/ac_client.txt

• And copy the content

• Open a terminal and Run

chmod +x ac_client.py

Building the
nodes

• Open session4_action/CMakeLists.txt:

catkin_install_python(PROGRAMS scripts/ac_client.py scripts/ac_server.py

DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}

)

• Go to root of the workspace

cd ~/ros_workshop/

catkin build

Running the
nodes

• Open a terminal and run

roscore

• Open a 2nd terminal in the workspace root and run

source devel/setup.bash

rosrun session4_action ac_client.py

• Open a 3rd terminal in the workspace root and run

source devel/setup.bash

rosrun session4_action ac_server.py

Robot Specific infrastructure in
ROS

Gazebo

Gazebo

• Open a terminal and run

Gazebo

• This is a Physics Simulator.

• There is gravity, light effects and friction.

Robot Specific infrastructure in
ROS

Robot Description
Language

Robot
Description
Language

• Move to the src folder and clone husarion/rosbot_description

• This is the format of robot models in ROS

• Robot Description (urdf files and drivers)

• Gazebo worlds

• Navigation and Controls

• Build the ROS workspace

https://github.com/husarion/rosbot_description

Robot
Description
Language

• ROS Description
• URDF Files

• Meshes

• Communication and control drivers

The Unified Robotic Description Format (URDF) is an XML file format
used in ROS to describe all elements of a robot.

Meshes can be generated from any 3d modelling software.

Robot
Description
Language

• Gazebo worlds
• World Files

World files are another type of xml files. They can be directly opened
from gazebo and directly modified. Meshes and height maps can also be
imported.

Robot
Description
Language

• Navigation and Control
• Teleoperation

• Camera access

• Mapping

• Localization

Robot Specific infrastructure in
ROS

Robot Geometry Library

Robot
Geometry
Librabry

Motor 4 &
controller

Main controller

Motor 2 &
controller

Motor 3 &
controller

Motor 1 &
controller

Robot
Geometry
Librabry

TF Publisher 4

TF listener

TF Publisher 2 TF Publisher 3

TF Publisher 1

Robot
Geometry
Librabry

• Tf Listener

• Tf Broadcaster

Can be used to publish angle information and calculate
kinematics

Thank you

